LSF Batch User’s Guide

Sixth Edition, August 1998

Platform Computing Corporation

LSF Batch User’s Guide

Copyright © 1994-1998 Platform Computing Corporation
All rights reserved.

This document is copyrighted. This document may not, in whole or part, be copied, duplicated,
reproduced, translated, electronically stored, or reduced to machine readable form without prior
written consent from Platform Computing Corporation.

Although the material contained herein has been carefully reviewed, Platform Computing
Corporation does not warrant it to be free of errors or omissions. Platform Computing
Corporation reserves the right to make corrections, updates, revisions or changes to the
information contained herein.

UNLESS PROVIDED OTHERWISE IN WRITING BY PLATFORM COMPUTING
CORPORATION, THE PROGRAM DESCRIBED HEREIN IS PROVIDED AS IS WITHOUT
WARRANTY OF ANY KIND, EITHER EXPRESSED OR IMPLIED, INCLUDING, BUT NOT
LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A
PARTICULAR PURPOSE. IN NO EVENT WILL PLATFORM BE LIABLE TO ANYONE FOR
SPECIAL, COLLATERAL, INCIDENTAL, OR CONSEQUENTIAL DAMAGES, INCLUDING
ANY LOST PROFITS OR LOST SAVINGS, ARISING OUT OF THE USE OR INABILITY TO USE
THIS PROGRAM.

LSF Base, LSF Batch, LSF JobScheduler, LSF MultiCluster, LSF Analyzer, LSF Make, LSF Parallel,
Platform Computing, and the Platform Computing and LSF logos are trademarks of Platform
Computing Corporation.

Other products or services mentioned in this document are identified by the trademarks or
service marks of their respective companies or organizations.

Printed in Canada

LSF Bafch User’s Guide iii

Revision Information for LSF Batch User’s Guide

Edition Description

First This document describes LSF 2.0. Based on Chapter 1, Introduction to LSF, from
the LSF User’s and Administrator’s Guide, second edition.

Second Revised to incorporate the LSF 2.1 Release Notes.

Third Revised to reflect the changes in LSF 2.2.

Fourth Revised to describe the new features of LSF Suite 3.0.

Fifth Revised to describe the new features of LSF Suite 3.1.

Sixth Revised to describe the new features of LSF Suite 3.2.

Contents

Preface e e Xiii
AUAIBNCE . .. e Xiii

LSF SUItE 3.2 o xiii

LSF Enterprise Edition. Xiv

LSF Standard Edition. i e Xiv

Related DOCUMENtS i e Xiv

Online Documentation. i i e e e XV

Technical ASSIStaNCeo e e e XV
1T-Infroduction. i e e e 1
What 1S LSF? . .o 1

LSF Features . ..o 1

HOSE RESOUICES . . . ottt e e e e e 3

Batch Processing. 4
Interactive ProCcessingot 4
CIUSEEIS o e e 4

Fault Tolerance. e e 5
Structure Of LSF Base. e 6

Load Information Manager. 6

Remote EXeCUtion SErVer.t e 7

LSF AP o 7

LSF Utility Programst 7
Applications. 9

Structure of LSFBatch. e 10
2-GettingStarted 13
Getting Cluster Information. i 13
Displaying the Cluster and Master Names. 13

Displaying Available Resources. ..., 14

Getting Host Information............. i i i 16
Displaying Static Host Information............................... 16

Displaying Load Information.............. 17

LSF Bafch User’s Guide v

Contents

RUNNING JODS. ... 18
Running Jobson Remote Hosts i, 18
Load Sharing Commands With I stcsh........................... 19
Parallel Processing With LSFMake 19
Listing HOSES . .. oo 20
Submittingaldob ... 20
Selectingalob Queue. 21
Tracking BatchJobs o i 22
xbsub and x| sbat ch GUI Applications. 23

3-ClusterInformation. i 25

Findingthe Master. 25

LiStiNg RESOUICES oottt e e e e e 26

Listing HOSES. . . . oo 27

Displayingthe Load i 29

Graphical Load Display 30

4 - RESOUICES . ..ottt te ettt e aaane e 35

INtroduction tO RESOUICES.ottt e 35
Load INiCES. ot 37
StatiC RESOUICES. . . .ttt 41
Shared RESOUICES . ..o o 43
B00lean RESOUICESttt e 45

LiStiNG RESOUICES . . . oottt et et e 46

Resource Requirement Strings.t 46
Selection StriNg . ..o 47
Order StriNg. ..ot 49
Resource Usage Stringt e e 50
Job Spanning String 51
Specifying Shared Resourcesc oo, 52

Configuring Resource Requirementscovviiiinnennenn.. 53
Remote Task ListFile........ e 53
Managing Your Task List i 53

Using Resource ReqUIremMeNtS.t 54

S5-UsingLSFBatch. i e 55

Batch JobS ... 56

Fairshare Scheduling Policy i e, 58
Host Partition Fairshare Scheduling 59
Queue-Level Fairshare Scheduling 59

Vi

Hierarchical Fairshare i i, 60
Other Scheduling Policies. i i 62
Preemptive Scheduling i 62
Exclusive Scheduling i 63
Processor Reservation ...t 63
Backfill Scheduling.......... 64
Scheduling Parameters e e 64
Load Thresholds. i i e 64
Scheduling Conditions. i 65
Time Windows for Queuesand HOStSt 66
RUNWINAOWS e e 66
Dispatch Windows e e 66
BatCh QUEBUES . .. oot e 67
Finding Out What Queues Are Available. 67
Detailed Queue Information. i 69
Automatic Queue Selection i 75
Specifying Default Queues i 76
Queue Selection Mechanism i, 76
ChoosSiNg @ QUEUEot e e 77
BatCh USersS 78
Batch HOStS o 79
User and HOSt GrOUPS.o vttt e et 81
Viewing Hierarchical Share Information.............................. 82
Queue-Level Job Starters 84
Configuration Parameters.ttt i e 85
User Controlled Account Mapping. 86
6 - SubmittingBatchJobs i 89
Inputand OULPUL. e 90
Resource RequUIrements. 91
Resource Reservationc.co i e 91
Host Selection. e 93
Host Preference 94
Resource Limits i 95
Pre-Execution Commandsc i e 97
Job Dependencies.o 98
Job Dependency Examples i 100
Remote File ACCESS.o e 101
Startand Termination Time i e e 103
Parallel Jobs. e 103

LSF Bafch User’s Guide Vii

Contents

Minimum and Maximum Number of Processors 104
Specifying Localityo i 104

JOD AN AYS . .o 106
Creatingalob Array. ... 107
LSB JOBINDEX Environment Variable 109
Array Job Dependencies 109
Handling Input/Output/Error Files for Job Arrays................ 110
Specifyinga Share Account i 111
Re-initializing Job Environment on the Execution Host 111
Otherbsub Options ... i e e 112
JOb SCriPtS . o 114
Embedded SubmissionOptions. i 115
Running a Job Under a ParticularShell 116
Submitting Jobs Using the Job SubmissionGUI 117
7 -TrackingBatchJobs. i 119
Displaying Job Status 119
Finding Pending or Suspension Reasons................ 120
Monitoring Resource ConsumptionofJobs. 122
DisplayingJob History 123
Viewing Chronological History ot 125
Checking Partial Job Output 126
Tracking JOb Arrayso 126
Displaying Queue and Host Status.t 127
JOb CoNtrols 127
KillingJobs. 128
Suspending and ResumingJobs. i 128
Controlling Job Arrays.t 129
Sending an Arbitrary Signaltoalob............. L. 130
Moving Jobs Within and Between Queues 131
Job Modification. 132
Submitted Job Modification i 132
Dispatched Job Modification., 133

Job Array Modification 133

Job Tracking and Manipulation Usingthe GUI 135
8 - Running InteractiveJobs Ll 139
Shared Filesand User IDS. oot e 139
Running Remote Jobs withl srun 140
Running Parallel Jobswithl sgrun............ 141

viii

Load Sharing Interactive SESSiONS.t 142
Load Sharing Login oo e 142
Load Sharing X SesSioNscoviii e 142

Command-Level Job Starters.......... ... i 144

Interactive Batch Job Support. i 145

Shell Mode for Remote Execution........... ..., 147

9-USiNg I StCSh e s 149

Startingl stcsh. 149

Usingl stcshasYourLoginShell............... 150

Automatic Remote Execution. 150

Host Redirection. i e e 151

Job Control e 152

Built-inCommands 152
Thelsmode Command i, 153
Theconnect Command. i, 154

Modes of Operation. 154

Differences from OtherShells, 155

Writing Shell Scriptsinlstecsh o 156

Limitations 156

10-UsingLSFMake. e 159

Parallel EXeCUtion 159

Invoking LSFMakKe e 160
Specifying the Number of Processors 160

File ServerLoad 160

Tuning Your Makefile. 161

Building in Subdirectories i 161

Running | smakeasaBatchlJob 162

Differences from Other Versionsof make 163

11 - Checkpointing and Migration., 165

Approaches to Checkpointing 166
Kernel-level Checkpointing. i 166
User-level Checkpointing i 166
Application-level Checkpointing................. 166
Checkpoint Directory.t e e 167
Uniform Checkpointing Interface 167
Theechkpnt Command. 167
Theerestart Command............. ... i, 168

LSF Bafch User’s Guide iX

Contents

Submitting CheckpointableJobs il 169
Checkpointingaldob. 170
Restarting a Checkpointed Job., 171
Job Migration e 173
Queues and Hosts for Automatic Job Migration................... 174
Automatically Rerunning and RestartingJobs 174
Submitting a Job for Automatic Migration........................ 174
Building CheckpointableJobs i 175
The Checkpoint Library.c i e, 175
The Checkpoint Startup Routine 175
LiNKING . ..o 175
Limitations.o 178

12 - Customizing Batch JobsforLSF. 179
Environment Variables 179
Parallel Jobs.o 181
Gettingthe HoSt LSt 181
Starting Parallel Tasks Withlstools 182
Using LSF Make to Run Parallel BatchJobs 182
Submitting PVM Jobsto LSFBatch 183
Submitting MP1l Jobsto LSFBatch 183
Submitting POE Jobsto LSFBatch. 185
Using a Job Starter for Parallel Jobs. 186

13 - Using LSF MultiCluster. 187
What is LSF MultiCluster? 187
Getting Remote Cluster Information 188
Running Batch Jobs across Clusters 189
Running Interactive Jobs on Remote Clusters. 192
User-Level Account Mapping Between Clusters 192
14 - Interoperation with NQS. i it 195
Choosingan LSFBatchQueue. 196
SubmittingaJob from LSFtoNQS i 196
Controlling Jobs Runningon NQS i 197
Forwarding of Qutput Files i 197

A - Customizing x| sbatchMenultems. 199

B-Frame Armrays.ttt e 203
OVBIVIBW . . et e e e e 203
Distribution. 204
Frame Array CONCEPLSot 204
SubmItting Frame Arrayst 205
Tracking Frame Arraysot 208
Controlling Frame Arrays.t 208

C - Using LSF with AliasRenderer. it 211
OVBIVIBW . . oo e 211
Distribution. 212
Installing the queue-level job starter. 212
Submitting Checkpointed Frame Arrayscovviiiniinnnnn. 212
Tracking Checkpointed Frame Arrays.coouvuienennnnnnnnns 214

D-UsingLSFWIth FLUENT. e e s 215
OVBIVIBW . . et e e 215
Distribution. 216
Configuring the Checkpointing Executable Files 216
Submitting the FLUENT Job 217
Checkpointing the FLUENT job i 217
Restarting the FLUENT job i i, 218

INdeX. .. 219

LSF Bafch User’s Guide Xi

Contents

Xii

Preface

Audience

This guide provides tutorial and reference information for users of LSF Base, LSF Batch
and LSF MultiCluster. Users should be familiar with executing commands in a UNIX
or Windows NT environment.

LSF Batch administrators should also be familiar with the contents of this guide, as
well as those of the LSF Batch Administrator’s Guide.

LSF Suite 3.2

LSF is a suite of workload management products including the following:

LSF Batch is a batch job processing system for distributed and heterogeneous
environments, which ensures optimal resource sharing.

LSF JobScheduler is a distributed production job scheduler that integrates
heterogeneous servers into a virtual mainframe or virtual supercomputer

LSF MultiCluster supports resource sharing among multiple clusters of computers
using LSF products, while maintaining resource ownership and cluster autonomy.

LSF Analyzer is a graphical tool for comprehensive workload data analysis. It
processes cluster-wide job logs from LSF Batch and LSF JobScheduler to produce
statistical reports on the usage of system resources by users on different hosts through
various queues.

LSF Bafch User’s Guide Xiii

Preface

LSF Parallel is a software product that manages parallel job execution in a production
networked environment.

LSF Make is a distributed and parallel Make based on GNU Make that simultaneously
dispatches tasks to multiple hosts.

LSF Base is the software upon which all the other LSF products are based. It includes
the network servers (LIM and RES), the LSF API, and load sharing tools.

There are two editions of the LSF Suite:
LSF Enterprise Edition

Platform’s LSF Enterprise Edition provides a reliable, scalable means for organizations
to schedule, analyze, and monitor their distributed workloads across heterogeneous
UNIX and Windows NT computing environments. LSF Enterprise Edition includes all
the features in LSF Standard Edition (LSF Base and LSF Batch), plus the benefits of LSF
Analyzer and LSF MultiCluster.

LSF Standard Edition

The foundation for all LSF products, Platform’s Standard Edition consists of two
products, LSF Base and LSF Batch. LSF Standard Edition offers users robust load
sharing and sophisticated batch scheduling across distributed UNIX and Windows NT
computing environments.

Related Documents

The following guides are available from Platform Computing Corporation:

LSF Installation Guide

LSF Batch Administrator’s Guide

LSF Batch Administrator’s Quick Reference
LSF Batch User’s Guide

LSF Batch User’s Quick Reference

LSF JobScheduler Administrator’s Guide
LSF JobScheduler User’s Guide

Xiv

LSF Analyzer User’s Guide
LSF Parallel User’s Guide
LSF Programmer’s Guide

Online Documentation

= Man pages (accessed with the man command) for all commands
= Online help available through the Help menu for the x| sbat ch, xbnod, xbsub,
xbal ar ns, xbcal and x| sadmi n applications.

Technical Assistance

If you need any technical assistance with LSF, please contact your reseller or Platform
Computing’s Technical Support Department at the following address:

LSF Technical Support

Platform Computing Corporation
3760 14th Avenue

Markham, Ontario

Canada L3R 3T7

Tel: +1 905 948 8448

Toll-free: 1-87PLATFORM (1-877-528-3676)
Fax: +1 905 948 9975

Electronic mail: support@platform.com

Please include the full name of your company.

You may find the answers you need from Platform Computing Corporation’s home
page on the World Wide Web. Point your browser to www.platform.com.

If you have any comments about this document, please send them to the attention of
LSF Documentation at the address above, or send email to doc@platform.com.

LSF Bafch User’s Guide XV

Preface

1. Infroduction

This section of the LSF Batch User’s Guide gives a quick introduction to LSF Base, LSF
Batch, LSF Make and LSF MultiCluster products. After reading the conceptual
material, you should be able to begin using LSF. The rest of the guide contains more
detailed information on LSF features and commands.

What is LSF?

LSF is a suite of workload management products from Platform Computing
Corporation. The LSF Suite includes LSF Batch, LSF JobScheduler, LSF MultiCluster,
LSF Make, and LSF Analyzer all running on top of the LSF Base system.

LSF manages, monitors, and analyzes the workload for a heterogeneous network of
computers and it unites a group of UNIX and NT computers into a single system to
make better use of the resources on a network. Hosts from various vendors can be
integrated into a seamless system. You can submit your job and leave the system to
find the best host to run your programs.

LSF supports sequential and parallel applications running as interactive and batch
jobs. LSF also allows new distributed applications to be developed through LSF
Application Programming Interface (API), C programming libraries and a tool kit of
programs for writing shell scripts.

LSF Features

With LSF you can use a network of heterogeneous computers as a single system. You
are no longer limited to the resources on your own workstation. You do not need to
rewrite or change your programs to take advantage of LSF. You only need to learn a
few simple commands and the resources of your entire network will be within reach.

LSF Batfch User’s Guide 1

1 Introduction

LSF can automatically select hosts in a heterogeneous environment based on the
current load conditions and the resource requirements of the applications.

With LSF, remotely run jobs behave just like jobs run on the local host. Even jobs with
complicated terminal controls behave transparently to the user as if they were run
locally.

LSF can run batch jobs automatically when required resources become available, or
when systems are lightly loaded. LSF maintains full control over the jobs, including the
ability to suspend and resume the jobs based on load conditions.

LSF can run both sequential and parallel jobs. Some jobs speed up substantially when
run on a group of idle or lightly loaded hosts. For example, the LSF Make program
allows you to do your software builds or automated tests many times faster than with
traditional makes.

With LSF, you can transparently run software that is not available on your local host.
For example, you could run a CAD tool that is only available on an HP host from your
Sun workstation. The job would run on the HP and be displayed transparently on your
Sun system.

With LSF, the system administrators can easily control access to resources such as:

who can submit jobs and which hosts they can use
= how many jobs specific users or user groups can run simultaneously
= time windows during which each host can run load shared jobs

= load conditions under which specific hosts can accept jobs or have to suspend
some jobs

= resource limits for jobs submitted to specific queues

LSF provides mechanisms for resource and job accounting. This information can help
the administrator to find out which applications or users are consuming resources, at
what times of the day (or week) the system is busy or idle, and whether certain
resources are overloaded and need to be expanded or upgraded.

LSF allows you to write your own load sharing applications, both as shell scripts using
the | st ool s programs and as compiled programs using the LSF application
programming libraries.

Host Resources

LSF provides comprehensive resource and load information about all hosts in the
network.

Resource information includes the number of processors on each host, total physical
memory available to user jobs, the type, model, and relative speed of each host, the
special resources available on each host, and the time windows when a host is available
for load sharing.

Dynamic load information includes:

CPU load

= available real memory

= available swap space

= paging activity

e |/0 activity

= number of interactive users logged in
= interactive idle time

« spaceinthe/t np directory

= arbitrary site-defined load indices

LSF Bafch User’s Guide 3

1 Introduction

Batch Processing

LSF Batch lets you submit batch jobs to a queue, which can have access to many hosts
on your network, and can automatically run jobs as soon as a suitable host is available.
Resource intensive jobs are processed more efficiently because they are scheduled
automatically. You do not have to spend time hunting around on the network to find
an idle host with the resources that your job needs.

The system administrator can create multiple queues, and can specify policies for each
queue that will help to prioritize and schedule the work.

Interactive Processing

LSF lets you run interactive jobs on any computer on the network, using your own
terminal or workstation. Interactive jobs run immediately and normally require some
input through a text-based or graphical user interface. All the input and output is
transparently sent between the local host and the job execution host.

You can submit interactive jobs using LSF Batch to take advantage of queues and
queuing policies. However, an interactive batch job is subject to the scheduling policies
of the submission queue, so it may not be dispatched immediately.

Clusters

Load sharing in LSF is based on clusters. A cluster is simply a group of hosts. Each
cluster has one or more LSF administrators. An administrator is a user account that has
permission to change the LSF configuration and perform other maintenance functions.
An LSF administrator decides how the hosts are grouped together.

A cluster can contain a mixture of host types. By putting all hosts types into a single
cluster, you can have easy access to the resources available on all host types.

1

Clusters are normally set up based on administrative boundaries. LSF clusters work
best when each user has an account on all hosts in the cluster, and user files are shared
among the hosts so that they can be accessed from any host. This way LSF can send a
job to any host. You need not worry about whether the job will be able to access the
correct files.

LSF can also run batch jobs when files are not shared among the hosts. LSF includes
facilities to copy files to and from the host where the batch job is run, so your data will
always be in the right place.

LSF can also run batch jobs when user accounts are not shared by all hosts in a cluster.
Accounts can be mapped across machines.

LSF MultiCluster supports interoperation across clusters. Your jobs can be forwarded
transparently to be run on another cluster within your organization.

Fault Tolerance

LSF is designed to continue operating even if some of the hosts in the cluster are
unavailable. One host in the cluster acts as the master, but if the master host becomes
unavailable another host takes over. LSF services are available as long as there is one
available host in the cluster.

When a host crashes, all jobs running on that host are lost. No other pending or

running jobs are affected. Important jobs can be submitted to LSF Batch with an option
to automatically restart if the job is lost because of a host failure.

LSF Bafch User’s Guide 5

1 Introduction

Structure of LSF Base

Figure 1 shows the structure of LSF Base and how it fits into your system. The software
modules that make up LSF Base are shaded.

Figure 1. Structure of LSF Base

User Programs and Commands Applications
LSF LSF LSF LSF Parallel Gl Utilitias
Batch JobScheduler MultiCluster i Analyzer Tools Tools
LSLIEB Base Syatern API
Load Informatiom Manager, Rem ote Execution Server Server Dasmons

cray Wl Digital f HP-ux ll B l W scl I Sunos/fiwindoy Operating Syatems
unicosll aLrHa fll Hera [l Alx 1A W Solaris i NT

A server is a host that runs load shared jobs. The Load Information Manager (LIM) and
Remote Execution Server (RES) run on every server. The LIM and RES are implemented
as daemons that interface directly with the underlying operating systems and provide
users with a uniform, host independent environment. The Load Sharing LIBrary (LSLIB)
is the basic interface.

The LIM, RES and LSLIB form the LSF Base system.
Load Information Manager

The LIM on each server monitors its host’s load and exchanges load information with
other LIMs. On one host in the cluster, the LIM acts as the master. The master LIM
collects information for all hosts and provides that information to the applications. The
master LIM is chosen among all the LIMs running in the cluster. If the master LIM

1

becomes unavailable, a LIM on another host will automatically take over the role of
master.

The LIM provides simple placement advice for interactive tasks. This information is

used by some of the | st ool s(1) applications (for example, | sr un) to determine
which host to run on.

Remote Execution Server

The RES on each server accepts remote execution requests and provides fast,
transparent and secure remote execution of interactive jobs.

LSF API

LSLIB is the Application Programming Interface (API) for the LSF Base system, providing
easy access to the services of LIM and RES.

LSF Utility Programs

The LSF utilities are a suite of products built on top of LSF Base. The utilities include
the following products;

LSF Batch
The LSF Batch queuing system uses dynamic load information from the LIM to

schedule batch jobs in an LSF cluster. LSF Batch is described further in the section
‘Structure of LSF Batch’ on page 10.

LSF JobScheduler

The LSF JobScheduler is a separately licensed product of LSF that manages data
processing workload in a distributed environment.

LSF MultiCluster
A very large organization may divide its computing resources into a number of

autonomous clusters, reflecting the structure of the company. The separately licensed
LSF MultiCluster product enables load sharing across clusters resulting in more

LSF Bafch User’s Guide 7

1 Introduction

efficient use of the resources of the entire organization. LSF MultiCluster is described
in more details in ‘Using LSF MultiCluster’ on page 187.

LSF Analyzer

LSF Analyzer is a graphical tool for comprehensive workload data analysis. It
processes cluster-wide job logs from LSF Batch and LSF JobScheduler to produce
statistical reports on the usage of system resources by users on different hosts through
various queues.

Command Interpreter

| st cshis aload-sharing version of t csh, a popular UNIX command interpreter
(shell). In addition to all the features of t csh, | st csh allows arbitrary UNIX
commands and user programs to be executed remotely. Remote execution with

| st csh is completely transparent. For example, you can runvi remotely, suspend it,
and resume it. For more information, see ‘Using Istcsh’ on page 149.

LSF Make

LSF Make is a load sharing version of GNU make. It uses the same makefiles as GNU
make and behaves similarly, except that you specify the number of hosts to use to run
the make tasks in parallel. Tasks are started on multiple hosts simultaneously to reduce
the execution time.

| smake, the LSF Make executable, is covered by the Free Software Foundation General
Public License. t csh is covered by copyrights held by the University of California.
Read the file LSF_M SC/ | smake/ COPYI NGin the LSF software distribution for
details.

Load Sharing Tools

The | st ool s are a set of utilities for getting information from LSF and running
programs on remote hosts. For example, you can write a script that uses the | st ool s
to find the best hosts satisfying given resource requirements, then run jobs on one or
more of the selected hosts.

Parallel Tools

The parallel tools are a set of utilities for users to run parallel applications using
message passing packages. PVM and MPI jobs can be submitted to the LSF Batch
system through pvnj ob and npi j ob, shell scripts for running PVM and MPI jobs
under LSF Batch. See ‘Parallel Jobs’ on page 181 for more information.

GUI Tools

LSF has a comprehensive set of Graphical User Interface tools that give users complete
access to the power and flexibility of the LSF Suite with the convenience of point and
click.

Applications

Most applications can access LSF through LSF utility programs. Most applications do
not need to communicate directly with LSF and do not need to be modified to work
with LSF. Nearly all UNIX or Windows NT commands and third-party applications
can be run using LSF utilities.

LSF Bafch User’s Guide 9

1 Introduction

Structure of LSF Baich

LSF Batch is a distributed batch system built on top of the LSF Base system to provide
powerful batch job scheduling services to users. Figure 2 shows the components of LSF
Batch and the interactions among them.

Figure 2. Structure of LSF Batch

Applications
User Jobs
Batch GUI NQS LSF Batch Utilities
Commands Tools Commands o
LSF Batch API
LSBLIB
Server Daemons
mbatchd sbatchd
LSF Base System
LSF Services

LSF Batch accepts user jobs and holds them in queues until suitable hosts are available.
Host selection is based on up-to-date load information from the master LIM, so LSF
Batch can take full advantage of all your hosts without overloading any.

LSF Batch runs user jobs on suitable server hosts that the LSF administrator has chosen.
LSF Batch has sophisticated controls for sharing hosts with interactive users, so you do
not need dedicated hosts to process batch jobs.

There is one master batch daemon (bat chd) running in each LSF cluster, and one
slave batch daemon (sbat chd) running on each batch server host. User jobs are held
in batch queues by nmbat chd, which checks the load information on all candidate hosts
periodically. When a host with the necessary resources becomes available, mbat chd
sends the job to the sbat chd on that host for execution. When more than one host is

1

available, the best host is chosen. The sbat chd controls the execution of the jobs and
reports job status to the mbat chd.

The LSF Batch Library (LSBLIB) is the Application Programming Interface (API) for
LSF Batch, providing easy access to the services of nbat chd and sbat chd. LSBLIB
provides a powerful interface for advanced users to develop new batch processing
applications in C.

NQS Interoperation

NQS interoperation allows LSF users to submit jobs to remote NQS servers using the
LSF user interface. The LSF administrator can configure LSF Batch queues to forward
jobs to NQS queues. Users may then use any supported interface, including LSF Batch
commands, | sNQS commands, and x| sbat ch, to submit, monitor, signal and delete
batch jobs in NQS queues. This feature provides users with a consistent user interface
for jobs running under LSF Batch and NQS.

LSF Bafch User’s Guide 11

1 Introduction

2. Getting Started

This chapter describes how to use some of the basic features of LSF. After following the
examples in this chapter you should be able to use LSF for most of the everyday tasks.

Configuration options shown in the following examples, such as host types and model

names, host CPU factors (representing relative processor speed), and resource names
are examples only; your system likely has different values for these settings.

Getting Cluster Information

Cluster information includes the cluster master host, cluster name, cluster resource
definitions, cluster administrator, etc.

Displaying the Cluster and Master Names

LSF provides tools for users to get information about the system. The first command
you want to use when you learn LSF is | si d. This command tells you the version of
LSF, the name of your LSF cluster, and the current master host.

%Ilsid
LSF 3.1, Dec 1, 1997
Copyri ght 1992-1997 Pl atform Conputi ng Cor poration

My cluster nane is test cluster
M/ naster nane is hostA

LSF Batfch User’s Guide 13

2 Getting Started

To find out who your cluster administrator is and see a summary of your cluster, run
the | scl ust er s command:

%11 sclusters
CLUSTER_NAME STATUS MASTER_HOST ADM N HOSTS SERVERS
test cluster ok host b | sf 6 6

If you are using the LSF MultiCluster product, you will see one line for each of the
clusters that your local cluster is connected to in the output of | scl ust ers.

Displaying Available Resources

The | si nf o command lists all the resources available in the cluster.

%1 sinfo

RESORCE NAME TYPE CRDER DESCR PTI N

r15s Nuneric Inc 15-second CPU run queue | ength

rim Nuneric Inc 1-ninute CPU run queue | ength (alias: cpu)
r15m Nuneric Inc 15-mnute CPU run queue | ength

ut Nuneric Inc 1-mnute CPU utilization (0.0 to 1.0)
pPg Nuneric Inc Pagi ng rate (pages/ second)

io Nuneric Inc D sk IO rate (Kbytes/second)

I's Nuneric Inc Nunber of |ogin sessions (alias: |ogin)
it Nuneric Dec Idle tine (mnutes) (alias: idle)

tnp Nuneric Dec D sk space in /tnp (Mytes)

swp Nuneric Dec Avai | abl e swap space (Mvytes) (alias: swap)
nem Nuneric Dec Avai | abl e nenory (Myt es)

ncpus Nuneric Dec Nunber of CPs

ndi sks Nuneric Dec Nunber of |ocal disks

naxnem Nuneric Dec Maxi mum nenory (Moyt es)

Naxswp Nuneric Dec Maxi mum swap space (Myt es)

naxt np Nuneric Dec Maxi rum/tnp space (Mytes)

cpuf Nuneric Dec CPU fact or

r expri Nuneric NA Renote execution priority

server Boolean N A LSF server host

irix Boolean N A IR X UN X

hpux Boolean N A HP_UX

solaris Boolean N A Sun Solaris

cserver Boolean N A Conput e server

f server Boolean N A File server

N A
N A
N A
N A
N A

ai x Bool ean
type Sring
nodel Sring
st at us Sring
hnane Sring
TYPE_NAME

HPPA

SG 6

ALPHA

SUNSCL

RS6K

NTX86

MODEL_NAME CPU_FACTOR
DEC3000 10. 00
R10K 14. 00
PENT200 6. 00

| BMB50 7.00
SunSpar ¢ 6. 00
HP735 9.00
HP715 5.00

A X N X

Host
Host
Host
Host

type
nodel
st at us
nane

The | si nf o command displays three lists of information:

= available resource names in the system

= available host types

« available host models

The resources listed by | si nf o include built-in resources maintained by the LIM and
site specific resources configured by the LSF administrator. For a complete description
of how LSF manages resources, see ‘Resources’ on page 35.

The host types and host models are defined by the LSF administrator. Host types
represent binary compatible hosts; all hosts of the same type can run the same
executables. Host models give the relative CPU performance of different processors. In
this example, your LSF cluster treats an RLOK processor as being twice as fast as an IBM

LSF Bafch User’s Guide

15

2 Getting Started

350 processor (these numbers were invented for this example, and do not necessarily
correspond to the actual performance of these systems).

Getting Host Information

LSF keeps information about all hosts in the cluster. Some information is static and
some is dynamic. Static information is either configured by the LSF administrator, or
is a fixed property of the system. An example of static host information is the amount
of RAM memory available to users on a host.

Dynamic host information, or load indices, is determined by the LSF system, and
updated regularly. Dynamic information represents the changing resources available
on the host. Examples of dynamic host information are the current CPU load and the
currently available temporary file space.

Displaying Static Host Information

A load sharing cluster may consist of hosts of differing architecture and speed. The
| shost s command displays configuration information about hosts. All these
parameters are defined by the LSF administrator in the LSF configuration files, or
determined by the LIM directly from the system.

% | shost s

HOST_NAME type nodel cpuf ncpus nmaxmem nmaxswp server RESOURCES
host D SUNSOL SunSparc 6.0 1 64M 112M Yes (solaris cserver)
host B ALPHA DEC3000 10.0 1 94M 168M Yes (al pha cserver)
host M RS6K | BMB50 7.0 1 64M 124M Yes (cserver aix)
host C Sd 6 RLOK 14.0 16 1024M 1896M Yes (irix cserver)
host A HPPA HP715 6.0 1 98M 200M Yes (hpux fserver)

In this example, the host type SUNSOL represents Sun SPARC systems running Solaris,
and ALPHA represents a Digital Alpha server running Digital Unix.

See ‘Listing Hosts’ on page 27 for a complete description of the | shost s command.

Displaying Load Information

The | sl oad command prints out current load information.

% | sl oad

HOST _NAMEstatus r15s r1lm r15mut pg Is it tnp swp nem
host D ok 0.1 0.0 0.1 2% 0.0 5 3 81M 82M 45M
host C ok 0.7 1.2 0.5 50% 1.1 11 O 322M337M 252M
host M ok 0.8 2.2 1.4 60% 15.40 136 62M 57M 45M
host A busy *5.23.6 2.6 99% *34.44 0 70M 34M 18M
host B lockU 1.0 1.0 1.5 99% 0.8 5 33 12M 24M 23M

The first line lists the load index names, and each following line gives the load levels
for one host. The r 15s, r Imand r 15mfields give the CPU load, averaged over
different time intervals. The ut field gives the percentage of time the CPU is in use. pg
is the paging rate, | s is the number of login sessions, i t is the idle time (the time since
the last interactive user activity), swp is the available swap space in megabytes, memis
the available RAM in megabytes, and t np is the available temporary disk space in
megabytes.

The st at us column gives the load status of the host. A host is busy if any load index
is beyond its configured threshold. When a load index is beyond its threshold, it is
printed with an asterisk “*’. In the above example, host Ais busy because load indices
r 15s and pg are too high. The | shosts -1 command shows the load thresholds.

Hosts with ok status are listed first. The ok hosts are sorted based on CPU and memory
load, with the best host listed first.

The | sl oad command reports more load indices if the - | option is given.
The | smon command provides an updating display of load information. The x| snon
command is an X-windows graphical display of host status and load levels in your LSF

cluster.

See the | sl oad(1),| snon(1), and x| snon(1) manual pages for more information.
Also see ‘Displaying the Load’ on page 29.

LSF Bafch User’s Guide 17

2 Getting Started

Running Jobs

LSF supports transparent execution of jobs on all server hosts in the cluster. You can
run your program on the best available host and interact with it just as if it were
running directly on your workstation. Keyboard signals such as CTRL-z and CTRL-C
work as expected.

Running Jobs on Remote Hosts

There are different ways to run jobs on a remote host. To run nyj ob on the best
available host, enter:

% | srun nyj ob
LSF automatically selects the best host that is of the same type as the local host.

If you want to run nryj ob on a host with specific resources, you must specify the
resource requirements. For example,

% Isrun -R 'cserver && swp>100" myjob

runs nyj ob on a host that has resource ‘cser ver’ (see ‘Displaying Available Resources
on page 14) and has at least 100 megabytes of virtual memory available.

If you want to run your job on a particular host, use the - moption:
%1 srun -m host D nyj ob

When you run an interactive job on a remote host, you can do most of the job controls
as if it were running locally. If your shell supports job control, you can suspend and
resume the job and bring the job to background or foreground as if it were a local job.
For a complete description, see the | srun(1) manual page.

You can also write one-line shell scripts or csh aliases to hide the remote execution.
For example:

#! [bin/sh
Script to renmotely execute nyjob
exec | srun -m hostD nyj ob

or

%alias nyjob "l srun -m host D nyj ob"
Load Sharing Commands With | st csh

The | st csh shell is a load-sharing version of the t csh command interpreter. It is
compatible with csh and supports many useful extensions. csh and t csh users can
use | st csh to send jobs to other hosts in the cluster without needing to learn any new
commands. You can run | st csh from the command line, or use the chsh command
to set it as your login shell. Refer to ‘Using Istcsh’ on page 149 for a more detailed
description of | st csh.

Parallel Processing With LSF Make

LSF Make is a load-sharing, parallel version of GNU make. It is compatible with
makefiles for most versions of make. LSF Make uses the LSF load information to
choose the best group of hosts for your make job. Targets in the makefile are
processed in parallel on the chosen hosts using the LSF remote execution facilities.
You do not need to modify your makefile to use LSF Make. By default, LSF Make
chooses hosts that are all of the same type. LSF Make is invoked using the | smake
command.

The following example uses the | smake -Vand-j 3 options to run on three hosts
and produce verbose output;

% | smake -V -j 3

[host A] [host Dl [hostK]

<< Execute on local host >>

cc -O-c arg.c -0 arg.o

<< Execute on renote host hostA >>
cc -O-c dev.c -0 dev.o

<< Execute on renote host hostK >>
cc -O-c nmain.c -o nmain.o

<< Execute on renote host hostD >>
cc -Oarg.o dev.o nain.o

LSF Make includes control over parallelism for recursive makes, which are often used
for source code trees that are organized into subdirectories. Parallelism can also be

LSF Bafch User’s Guide 19

2 Getting Started

controlled by the load on the NFS file server, so that parallel makes do not overload the
server and slow everyone else down. See ‘Using LSF Make’ on page 159 for details.

Listing Hosts

LSF Batch uses some (or all) of the hosts in an LSF cluster as batch server hosts. The
host list is configured by the LSF administrator. The bhost s command displays
information about these hosts.

% bhost s

HOST_NAME STATUS JL/U NMAX NJOBS RUN SSUSP USUSP RSV
host A ok - 2 1 1 0 0 0
host B ok - 3 2 1 0 0 1
host C ok - 32 10 9 0 1 0
host D ok - 32 10 9 0 1 0
host M unavai | - 3 3 1 1 1 0

STATUS gives the status of sbat chd. If a host is down or its sbat chd is not up, its
STATUS is ‘unavai | ’. The JL/ Ucolumn shows the maximum number of job slots a
single user can use on each host at one time. MAX gives the maximum number of job
slots that are configured for each host. The RUN, SSUSP, and USUSP columns display
the number of job slots in use by jobs in RUN state, suspended by the system, and
suspended by the user, respectively. The field RSV shows job slots that are reserved by
LSF Batch for some jobs. The NJOBS field shows the sum of field RUN, SSUSP, USUSP,
and RSV.

For a more detailed description of the bhost s command see ‘Batch Hosts’ on page 79.
Submitting a Job

To submit a job to the LSF Batch system, use the bsub command.

For example, submit the job sl eep 30. This command does nothing, and takes 30
seconds to do it. The LSF administrator configures one queue to be the default job queue;
if you submit a job without specifying a queue, the job goes to the default queue.

% bsub sl eep 30
Job <1234> is submtted to default queue <nornal >

20

2

In the above example, 1234 is the job ID assigned by LSF Batch to this job, and nor mal
is the name of the default job queue.

Your batch job remains pending until all conditions for its execution are met. Each
batch queue has execution conditions that apply to all jobs in the queue, and you can
specify additional conditions when you submit the job.

The-m " host A host B ..." option specifies that the job must run on one of the
specified hosts. By specifying a single host, you can force your job to wait until that
host is available and then run on that host.

For a detailed description of the bsub command see ‘Submitting Batch Jobs’ on page 89.
Selecting a Job Queue

Job queues represent different job scheduling and control policies. All jobs submitted to
the same queue share the same scheduling and control policy. Each job queue can use
a configured subset of the server hosts in the LSF cluster; the default is to use all server
hosts.

System administrators can configure job queues to control resource access by different
users and types of application. Users select the job queue that best fits each job. The
bqueues command lists the available LSF Batch queues:

% bqueues

QUEUE_NAME PRIO N CE STATUS MAX JL/U JL/P NJOBS PEND RUN SUSP
owner s 49 10 pen: Active - - - 1 0 1 0
priority 43 10 pen: Acti ve 10 - - 8 5 3 0
ni ght 40 10 pen: | nacti ve - - - 44 4 0 O
short 35 20 pen: Active 20 - 2 4 0 4 0
l'i cense 33 10 pen: Active 40 - - 1 1 0O O
nor nal 30 20 pen: Active - 2 - 0 0 0O O

A dash ‘-" in any entry means that the column does not apply to the row. In this
example some queues have no per-queue, per-user or per-processor job limits
configured, so the MAX, JL/ Uand JL/ P entries are *-'.

You can submit jobs to a queue as long as its STATUS is Open. However, jobs are not
dispatched unless the queue is Act i ve.

LSF Bafch User’s Guide 21

2 Getting Started

Tracking Batch Jobs

The bj obs command reports the status of LSF Batch jobs. The - u al | option specifies
that jobs for all users should be listed; the default is to list only jobs you submitted.

Running jobs are listed first. Pending jobs are listed in the order in which they will be
scheduled. Jobs in high priority queues are listed before those in lower priority queues.

% bj obs -u all
JABI D USER STAT QUEE FROM HOBT BEXEC HOST JCB NAME SUBM T_TI ME

1004 user RN short host A host A j ob0 Dec 16 09: 23
1235 wuser2 PEND priority hostM j obl Dec 11 13:55
1234 user2 SSUSP nor nal host D host M j ob3 Dec 11 10: 09
1250 userl PEND short host A j ob4 Dec 11 13:59

If you also want to see jobs that finished recently, enter:
% bj obs -a

All your jobs that are still in the LSF Batch system and jobs finished recently are
displayed.

The bj obs command has many other options. See ‘Batch Jobs’ on page 56. Also refer to
the bj obs(1) manual page for a complete description.

22

xbsub and x| sbat ch GUI Applications

You can submit your job to the LSF Batch system using the graphical user interface
application xbsub as shown in Figure 3.

Figure 3. xbsub Job Submission Window

LSF Bafch User’s Guide 23

2 Getting Started

x| sbat ch is another graphical user interface application for LSF Batch. You can use it
to monitor host, job, and queue status, and control your jobs.

Figure 4. x| sbat ch Main Window

pal_fd Uiex Sest Dims Feom Hast Eaee Beab H_:!I.-
131 saar]l BUM priovity hests hiines Koo 55 10 .55 41 1597 rn-!
B usarl 55TW racsel hzots brankta Noy IS5 11:27 .40 1890 wacalog
T wsaeT HiW orecs heslm haatn o B5 112700 1890 backup
134 wsaspd DSIEP licsnss hasto (L vy 75 10 .53 B3 1597 huild
138 mamc® FOTSP praoraty hawks Hore B5 1055 .98 10070 wacilog
15 wsaeS PEMD night hastd o §5 110480 1507 siwu

=51
Kinail_Fuall 13 il chinid_Besy
a~a & &
SR [i
E:l h.%t: 'Eu
T
HilE HiF Hil HHE ®HHE ®HE & @
1d1s licarss naght noomal EWEZ N priocribty shest

Both xbsub and x| sbat ch have extensive on-line help available through the Help
menu of each application.

xbsub can be started either directly from the command line or from x| sbat ch using
the ‘Submi t * button.

24

3. Cluster Information

This chapter is a detailed tutorial on how to use the LSF commands that report
information about the LSF cluster. Cluster information includes:

= cluster status

= resource configuration
= host configuration

= host load levels

Cluster information is available through commands and a graphical user interface.

Finding the Master

Thel si d command tells you the version of LSF, the name of the load-sharing cluster,
and the current master host.

%lsid

LSF 3.1, Dec 1, 1997

Copyri ght 1992-1997 Pl atform Conputing Corporation

My cluster nane is sanple_cluster
My naster nane is hostA

LSF Bafch User’s Guide 25

3 Cluster Information

Listing Resources

The | si nf o command displays the resources, host types, and host models in the LSF
cluster. See ‘Displaying Available Resources’ on page 14 for an example of the | si nf o
command.

The - | option to the | si nf o command displays all information available about load
indices. You can also specify load indices on the command line to display information
about the selected indices:

%lsinfo -1 swp cs irix

RESORCE NAME: swp

DESCR PTI QN Avai | abl e swap space (Mytes) (alias: swap)
TYPE CRDER INTERVAL BULTIN DYNAMC

Nuneric Dec 60 Yes Yes

RESORCE NAME: cpuf

DESCR PTION CPU factor

TYPE CROER INTERVAL BULTIN DYNAMC
Nureric Dec 0 Yes No

RESOLRCE NAME: i ri X
DESCR PTION IR X WN X

TYPE CRDER INTERVAL BULTIN DYNAM C
Boolean NA 0 No No
TYPE

Indicates whether the resource is numeric, string, or Boolean.

ORDER
I nc if the numeric value of the load index increases as the load it measures
increases, such as ut (CPU utilization). Dec if the numeric value decreases as
the load increases. N/ A if the resource is not numeric.

| NTERVAL

The load index is updated every | NTERVAL seconds. a value of 0 means the
value never changes.

26

BUI LTI N
If BUI LTI Nis Yes, the resource name is defined internally by the LIM. If
BUI LTI Nis No, the resource name is site-specific defined by the LSF
administrator.

DYNAM C
If DYNAM Cis Yes the resource value changes over time. If DYNAM Cis No the
resource represents information that does not change such as the total swap
space in the host.

Listing Hosts

A load-sharing cluster may consist of hosts of different architecture and speeds. The
| shost s command displays static information about hosts.

%1 shost s

HOST_NAME type nodel cpuf ncpus naxnem naxswp server RESOURCES

host D SUNSCL SunSparc 6.0 1 64M 112M Yes (solaris cserver)
host B ALPHA DEC3000 10.0 1 94M 128M Yes (al pha cserver)
host M RXK IBWMB50 7.0 1 64M 124M Yes (cserver aiXx)
host C SA6 RANK 14.0 16 1024M 1896M Yes (irix cserver)
host A HPPA HP715 6.0 1 98M 200M Yes (hpux fserver)
The fields displayed are:

t ype - the host CPU architecture. Hosts that can run the same binary programs should
have the same t ype.

nodel and cpuf - the host model and relative CPU performance factor. The higher the
number, the faster the CPU.

ncpus - the number of processors on this host.
maxnmem - t he maximum amount of physical memory available for user processes.

maxswp - the total swap space available.

LSF Bafch User’s Guide 27

3 Cluster Information

server - Yes if the host is an LSF server, No if the host is a client.
RESQURCES - the boolean resources defined for this host.

All these parameters are defined by the LSF administrator in the LSF configuration
files, or determined directly from the system.

The -1 option to the | shost s command displays more detailed information about
hosts, including the load thresholds. You can also use the - R resreq option to display
hosts with specific resources, or specify hosts on the command line.

There is also the - woption which displays information in table format without
truncating the fields. This is especially useful for scripts that parse the output of
| shost s.

% | shosts -1 hostC

HOST _NAME: host C
type nodel cpuf ncpus ndi sks naxnem naxswp naxtnp rexpri server
Sa6 RANK 14 16 4 1024M 1896M 120M O Yes

RESOURCES: irix cserver

RN WNDOMB: (al ways open)

LQAD THRESHOLDS:

riss rim ri15m ut pg io Is it tnp sw nem
- 3.5 - - - - - - - 974M 451M

The extra fields displayed by the - | option are:
ndi sks - the number of disk drives directly attached to the host
maxt np - the size of the disk partition that contains the /tmp directory
UNIX rexpri -the execution priority of remote jobs run by the RES. r expri is
a number between -20 and 20, with -20 representing the highest
priority and 20 the lowest. The default r expri is 0, which

corresponds to the default scheduling priority of 0 on BSD-based
UNIX systems and 20 on System V-based systems.

28

RUN_W NDOWS
The time windows during which LIM considers the host as available to
execute remote jobs.

Note
These run windows have the same function for LSF hosts as dispatch windows have
for LSF Batch hosts.

LOAD_THRESHOLDS
The host is considered busy if any load index is above its threshold (or
below, for decreasing load indices). LSF does not send interactive jobs to
busy hosts. If the threshold is displayed as a dash ‘-, the value of that load
index does not affect the host’s status.

Displaying the Load

The | sl oad command prints out current load information.

% Idoad
HOST_NAME status r15s rim r15m ut pg Is it tnp sw nmem
host D ok 0.1 0.0 0.1 2% 0.0 5 3 81M 82M 45M

host C ok 0.7 1.2 0.5 50% 1.1 11 0 322M 337M 252M
host M ok 0.8 2.2 1.4 60% 15.4 0 136 62M 37M 44M
host A busy *5.23.6 2.6 99% *34.4 4 0 70M 34M 18M
host B lockU 1.0 1.0 1.5 99% 0.8 5 33 12M 24M 23M

The first line lists all the load index names. The load indices are described in ‘Load
Indices’ on page 37.

The st at us column gives the load status of the host. A host is busy if any load index
is beyond its configured threshold. When a load index is beyond its threshold, it is
printed with an asterisk “*’. In the above example, host Ais busy because load indices
r 15s and pg are too high.

By default hosts are sorted based on CPU and memory load, with the best host listed

first. You can specify an order string using the - Rresreq option to sort the hosts in other
ways.

LSF Bafch User’s Guide 29

3 Cluster Information

The -1 option displays the values of all load indices, including external load indices.
You can also specify host names on the command line to display the load of specific
hosts. In this example ni o is an external load index defined by the LSF administrator.

% Ilsload -1 hostM
HOST NAME status r15s rlmr15m ut pg io Isit tnp sw nem nio
host M lockWw 0.7 0.50.1 21% 0.0 2287 0 31M 52M 25M 3.5

The -1 option displays the full host name, rather than truncating the name to fitin a
limited screen width. The output from | sl oad - | is better suited for automatic
processing, since the host name is always complete. It also shows all the load indices
rather than just some of them.

The | snon command provides an updating display of load information. An example
display from | snon is shown below. You can specify the resource requirements,
refresh interval, and other parameters interactively or on the command line. See the

| snon(1) manual page for more information.

% | snon host A hostB
Host nane: host A
Refresh rate: 10 secs

HOST NAME status r15s rlm r15m ut pg Is it sw nmem tnp
host B ok 0.0 0.0 0.0 6% 0.0 7 45 82M 51M 206M
host A ok 0.2 0.2 0.1 5% 8.9 2 0 140M 70M 119M

Graphical Load Display

x| snon is a graphical user interface (GUI) application that displays host status, load
levels, load history, and LSF cluster configuration information. The xI snon main
window shows an icon for each host in the cluster, with each host labelled with its

30

status. Hosts change colour as their status changes. The x| snon main window is
shown below.

Figure 5. x| snon Main Window

R - T
Eie e Optons il
ok ak trany ok uraal]

a s a"8 5
[ak
-
¥
e —

Hoe £ 104742 <hgabr shxius changed hom < 90 <unayal
Mo 5 124TAZ shegioe gixus chanped 1w «Das e o saravalle
Mo B 1 EATAE ahbgide Sl Chan god Fom o piis 0 spnavals
Hiire 28 1 EATAL ahal> Slakis i gad o o- 0 W cifls.
hire I3 154 TAT <heaime alab chinged o <ol B cunaviad-
Hire 35 1 DAT.S7 chegine vivus chanped o -angval i3 <ot

Each x| smon window has a “Help” menu item that calls up online help. For more
information about using x| snon, see the online help.

You can choose other displays from the “View” menu.

LSF Bafch User’s Guide

3 Cluster Information

The ‘Detailed Host Load’ window displays load levels as bar graphs. You can select
which load indices and which hosts are displayed by choosing options from the
“View” menu in the ‘Detailed Host Load’ window.

Figure 6. x| snon Detailed Host Load Window

'
Ee Y Qriem iy

[E |

1 - e il . 100 it

brita
iR 128
haifte o

tragnd m

tagie
Tl

basmm

raita
tarh
hags
brard
hare
Tl
masm

|

The ‘History of Host Load’ window displays the load levels as stripcharts, so you can
see the load history starting from when the ‘History of Host Load’ window is first
displayed. As with the ‘Detailed Host Load’ window, you can select hosts and load
indices by choosing options from the “View” menu.

32

Figure 7. x| snon History of Host Load Window

I —
\-------E

The ‘Cluster Configuration’ window below, shows the same host information as the
| shost s command displays.

Figure 8. x| snon Cluster Configuration Window

LSF Bafch User’s Guide 33

4. Resources

This chapter describes the system resources LSF keeps track of and how you use LSF
resource specifications. Topics covered in this chapter are:

= resources and load indices
= specifying resource requirements

= using task lists to set resource requirements for applications

Infroduction to Resources

A computer may be thought of as a collection of resources used to execute programs.
Different applications often require different resources. For example, a number
crunching program may take a lot of CPU power, but a large spreadsheet may need a
lot of memory to run well. Some applications may run only on machines of a specific
type, and not on others. To run applications as efficiently as possible, the LSF system
needs to take these factors into account.

In LSF, resources are handled by naming them and tracking information relevant to

them. LSF does its scheduling according to application’s resource requirements and
resources available on individual hosts. LSF classifies resources in different ways.

Classification by Availability
general resources

These are resources that are available on all hosts, e.g. all the load indices,
number of processors on a host, total swap space, host status.

LSF Bafch User’s Guide 35

4 Resources

special resources
These are resources that are only associated with some hosts, e.g. FileServer,
aix, solaris, SYSV.

Classification by the Way Values Change

dynamic resources
These are resources that change their values dynamically, e.g. all the load
indices, host status.

static resources
These are resources that do not change their values, e.g. all resources except
load indices and host status are static resources.

Classification by Types of Values

numerical resources
These are resources that take numerical values, e.g. all the load indices,
number of processors on a host, host CPU factor.

string resources
These are resources that take string values, e.g. host type, host model, host
status.

Boolean resources
These are resources that denote the availability of specific features, e.g. hspice,
FileServer, SYSV, aix.

Classification by Definition

configured resources
These are resources defined by user sites, such as external indices and
resources defined in the | sf . shar ed file, e.g. FileServer, fddi.

built-in resources

These are resources that are always defined by LIM, e.g. load indices, number
of CPUs, total swap space.

36

Classification by Location

host-based resources
These are resources that are not shared among hosts, but are tied to individual
hosts. An application must run on a particular host to access such resources,
e.g. CPU, memory (using up memory on one host does not affect the available
memory on another host), swap space.

shared resources
These are resources that are not associated with individual hosts in the same
way, but are "owned" by the entire cluster, or a subset of hosts within the
cluster. An application can access such a resource from any host which is
configured to share it, but doing so affects its value as seen by other hosts, e.g.
floating licenses, shared file systems.

Resource names are case sensitive, and can be up to 29 characters in length (excluding
some characters reserved as operators in resource requirement strings). You can list the
resources available in your cluster using the | si nf o command.

Load Indices

Load indices measure the availability of dynamic, non-shared resources on hosts in the
LSF cluster. Load indices built into the LIM are updated at fixed time intervals. External
load indices are updated when new values are received from the external load collection
program, ELIM, configured by the LSF administrator. Load indices are numeric in
value.

LSF Bafch User’s Guide 37

4 Resources

Table 1 summarizes the load indices collected by the LIM.

Table 1. Load Indices

Averaged Update
Index |Measures Units Direction |over Interval
st at us |host status string 15 seconds
ri5s run queue length |processes increasing |15 seconds |15 seconds
rim run queue length |processes increasing |1 minute |15 seconds
rism run queue length |processes increasing |15 minutes |15 seconds
ut CPU utilisation (per cent) increasing |1 minute |15 seconds
pg paging activity pages in + pages |increasing |1 minute |15 seconds
out per second
I's logins users increasing [N/A 30 seconds
it idle time minutes decreasing IN/A 30 seconds
swWp available swap megabytes decreasing |IN/A 15 seconds
space
mem available memory |megabytes decreasing |[N/A 15 seconds
tnp available space in |megabytes decreasing [N/A 120
temporary seconds
filesystem?
io disk 170 (shown by |kilobytes per increasing |1 minute |15 seconds
I sload-1) second
name external load index configured by LSF administrator site
defined

a. Directory C:\temp on NT and /tmp on UNIX.

The st at us index is a string indicating the current status of the host. This status
applies to the LIM and RES. The possible values for st at us are:

38

ok
The LIM can select the host for remote execution

busy
A load index exceeds the threshold defined by the LSF administrator; the LIM
will not select the host for interactive jobs

| ockU
The host is locked by a user or the LSF administrator

| ockW
The host’s availability time window is closed

unavai |
The LIM on the host is not responding

unl i censed
The host does not have a valid LSF license.

If the LIM is available but the RES server is not responding, st at us begins with a *-’.

Here is an example of the output from | sl oad:

%1 sl oad

HOST NAME status r15s rlm r15m ut pg Is it tnp sw nem
host N ok 0.0 0.0 0.1 1% 0.0 1 224 43M 67M 3M
host K - ok 0.0 0.0 0.0 3% 0.0 3 0 38M 40M 7M
host G busy *6.2 6.9 9.5 85% 1.1 30 0O 5M 400M 385M
host F busy 001 01 0.3 7% *17 6 0O O9M 23M 28M
host V unavai |

Ther 15s,r Imand r 15mload indices are the 15-second, 1-minute and 15-minute
average CPU run queue lengths. This is the average number of processes ready to use
the CPU during the given interval.

UNIx ~ Note
Run queue length indices are not necessarily the same as the load averages

printed by the upt i me(1) command; upt i me load averages on some
platforms also include processes that are in short term wait states (such
as paging or disk 1/0).

LSF Bafch User’s Guide 39

4 Resources

On multiprocessor systems more than one process can execute at a time. LSF scales the
run queue value on multiprocessor systems to make the CPU load of uniprocessors
and multiprocessors comparable. The scaled value is called the effective run queue
length. The - E option shows the effective run queue length.

LSF also adjusts the CPU run queue based on the relative speeds of the processors (the
CPU factor). The normalized run queue length is adjusted for both number of processors
and CPU speed. The host with the lowest normalized run queue length will run a CPU
intensive job the fastest. The - Noption shows the normalized CPU run queue lengths.

The ut index measures CPU utilization, which is the percentage of time spent running
system and user code. A host with no process running has a ut value of 0 percent; a
host on which the CPU is completely busy has a ut of 100 percent.

The pg index gives the virtual memory paging rate in pages per second. This index is
closely tied to the amount of available RAM memory and the total size of the processes
running on a host; if there is not enough RAM to satisfy all processes, the paging rate
will be high. Paging rate is a good measure of how a machine will respond to
interactive use; a machine that is paging heavily feels very slow.

The paging rate is reported in units of pages rather than kilobytes, because the
relationship between interactive response and paging rate is largely independent of
the page size.

Thel s index gives the number of users logged in. Each user is counted once, no matter
how many times they have logged into the host.

Thei t index is the interactive idle time of the host, in minutes. Idle time is measured
from the last input or output on a directly attached terminal or a network pseudo-
terminal supporting a login session.

UNI X Note
This does not include activity directly through the X server such as CAD

applications or emmacs windows, except on SunOS 4, Solaris, and HP-
UX systems.

The t np index is the space available on the file system that contains the / t np (UNIX)
or the C:\temp (NT) directory in megabytes.

40

4

The swp index gives the currently available swap space in megabytes. This represents
the largest process that can be started on the host.

The nemindex is an estimate of the real memory currently available to user processes.
This represents the approximate size of the largest process that could be started on a
host without causing the host to start paging. This is an approximation because the
virtual memory behaviour of operating systems varies from system to system and is
hard to predict.

Thei o index is only displayed with the - | optionto| sl oad. This index measures I/
O throughput to disks attached directly to this host, in kilobytes per second. It does not
include 170 to disks that are mounted from other hosts.

External load indices are defined by the LSF administrator. The |l si nf o command lists
the external load indices and the | sl oad -1 command displays the values of all load
indices. If you need more information about the external load indices defined at your
site, contact your LSF administrator.

Static Resources

Static resources represent host information that does not change over time such as the
maximum RAM available to user processes and the number of processors in a
machine. Most static resources are determined by the LIM at start-up time. Table 2 lists
the static resources reported by the LIM.

LSF Bafch User’s Guide 41

4 Resources

Table 2. Static Resources

Index Measures Units Determined by

type host type string configuration

nodel host model string configuration

hnane host name string configuration

cpuf CPU factor relative configuration

server host can run remote jobs Boolean configuration

rexpri execution priority (UNIX only) |ni ce(2) argument |configuration

ncpus number of processors processors LIM

ndi sks number of local disks disks LIM

maxnmem |maximum RAM memory megabytes LIM
available to users

maxswp maximum available swap space|megabytes LIM

maxt nmp maximum available space in megabytes LIM
temporary file system

Thet ype and nodel static resources are strings specifying the host type and model.

The CPU factor is the speed of the host’s CPU relative to other hosts in the cluster. If
one processor is twice the speed of another, its CPU factor should be twice as large. The
CPU factors are defined by the LSF administrator. For multiprocessor hosts the CPU
factor is the speed of a single processor; LSF automatically scales the host CPU load to
account for additional processors.

The ser ver static resource is Boolean; its value is 1 if the host is configured to execute
tasks from other hosts, and 0 if the host is a client.

Static resources can be used to select appropriate hosts for particular jobs based on

binary architecture, relative CPU speed, and system configuration.

42

Shared Resources

A shared resource is a resource that is not tied to a specific host, but is associated with
the entire cluster, or a specific subset of hosts within the cluster. Examples of shared
resources include:

= floating licenses for software packages
= disk space on a file server which is mounted by several machines
= the physical network connecting the hosts

An application may use a shared resource by running on any host from which that
resource is accessible. For example, in a cluster in which each host has a local disk but
can also access a disk on a file server, the disk on the file server is a shared resource,
and the local disk is a host-based resource. There will be one value for the entire cluster
which measures the utilization of the shared resource, but each host-based resource is
measured separately.

LSF does not contain any built-in shared resources. All shared resources must be
configured by the LSF Administrator. A shared resource may be configured to be
dynamic or static. In the above example, the total space on the shared disk may be static
while the amount of space currently free is dynamic. A site may also configure the
shared resource to report numeric, string or Boolean values.

Viewing Shared Resources

In order to view the shared resources in the cluster, use the - s option of the | shost s,
| sl oad,and bhost s commands. For example, suppose a cluster consists of two hosts,
each of which have access to a total of five floating licenses for a particular package.
They also access a scratch directory, containing 500MB of disk space, from a file server.
The LSF administrator has set the resource definitions as shown in Table 3.

LSF Bafch User’s Guide 43

4 Resources

Table 3. Example of Shared Resources

Resource Name Describes

tot_lic Total number of licenses in cluster

tot_scratch Total amount of space in shared scratch directory (in MB)
avail_lic Currently available number of licenses

avail_scratch Currently available space in shared scratch dir (in MB)

The output of | shost's - s could be:
% | shosts -s

RESQURCE VALUE LCCATI ON
tot lic 5 host 1 host 2
tot _scratch 500 host 1 host 2

The “VALUE” field indicates the amount of that resource. The “LOCATION” column
shows the hosts which share this resource. The information displayed by | shost s(1)
is static, meaning that the value will not change over time. | sl oad - s displays the
information about shared resources which are dynamic:

% | sload -s

RESQURCE VALUE LOCATI ON
avail lic 2 host 1 host 2
avail _scratch 100 host 1 host 2

The above output indicates that 2 licenses are available, and that the shared scratch
directory currently contains 100MB of space.

Under LSF Batch, shared resources may be viewed using bhost s -s:

% bhosts -s

RESQURCE TOTAL RESERVED LOCATI ON

tot lic 5 0.0 host A hostB
tot _scratch 500 0.0 host A host B
avail lic 2 3.0 host A hostB
avail _scratch 100 400.0 host A hostB

44

The “TOTAL” column gives the value of the resource. For dynamic resources, the
“RESERVED” column displays the amount that has been reserved by running jobs.

Boolean Resources

Boolean resource names are used to describe features that may be available only on
some machines in a cluster. For example:

= Machines may have different types and versions of operating systems.

= Machines may play different roles in the system such as file server or compute
server.

< Some machines may have special-purpose devices needed by some applications.

= Certain software packages or licenses may be available only on some of the
machines.

Any characteristics or attributes of certain hosts that can be useful in selecting hosts for
remote jobs may be configured as Boolean resources. Specifying a Boolean resource in
the resource requirements of a job limits the set of computers that can execute the job.
Table 4 lists some examples of Boolean resources.

Table 4. Examples of Boolean Resources

Resource Name Describes Meaning of Example Name
cs role in cluster compute server

fs role in cluster file server

solaris operating system Solaris operating system
frame available software FrameMaker license

LSF Bafch User’s Guide 45

4 Resources

Listing Resources

The |l si nf o command lists all the resources configured in the LSF cluster. See

‘Displaying Available Resources’ on page 14 for an example of the | si nf o command. The

I si nfo -1 option gives more detail about each index:

%Ilsinfo -1 rim

RESOURCE_NAME: r1m

DESCRI PTION: 1-minute CPU run queue length (alias: cpu)

TYPE ORDER I NTERVAL BULTIN DYNAM C

Nuneri c I nc 15 Yes Yes

= TYPE indicates whether the resource is numeric, string, or Boolean.

= ORDERIs | nc if the numeric value of the load index increases as the load it
measures increases, such as ut (CPU utilization), or Dec if the numeric value
decreases as the load increases. If the resource is not numeric, the ORDERis N/ A.

= | NTERVAL shows the number of seconds between updates of that index.

e BUI LTI Nis Yes if the index is built into the LIM and No if the index is external.

= DYNAM Cis Yes if the resource is a load index that changes over time and No if the
resource is a static or Boolean resource.

Resource Requirement Strings

A resource requirement string describes the resources a job needs. LSF uses resource
requirements to select hosts for remote execution and job execution.

A resource requirement string is divided into four sections:
= A selection section.

= An ordering section.

46

= A rresource usage section.
= Ajob spanning section

The selection section specifies the criteria for selecting hosts from the system. The
ordering section indicates how the hosts that meet the selection criteria should be
sorted. The resource usage section specifies the expected resource consumption of the
task. The job spanning section indicates if a (parallel) batch job should span across
multiple hosts.

The syntax of a resource requirement expression is:

sel ect[sel ectstring] order[orderstring] rusage[usagestring] span
[spanstri ng]

The section names are sel ect, or der, r usage, and span. The syntax for each of
selectstring, orderstring, usagestring, and spanstring is defined below.

Note
The square brackets are an essential part of the resource requirement expression.

Depending on the command, one or more of these sections may apply. The |l shost s
command only selects hosts, but does not order them. The | s| oad command selects
and orders hosts, while | spl ace uses the information in sel ect , or der, and

r usage sections to select an appropriate host for a task. The | sl oadadj command
uses the r usage section to determine how the load information should be adjusted on
a host, while bsub uses all four sections. Sections that do not apply for acommand are
ignored.

If no section name is given, then the entire string is treated as a selection string. The
sel ect keyword may be omitted if the selection string is the first string in the resource
requirement.

Selection String

The selection string specifies the characteristics a host must have to match the resource
requirement. It is a logical expression built from a set of resource names. The | si nf o
command lists all the resource names and their descriptions. The resource names
swap, i dl e, | ogi ns, and cpu are accepted as aliases for swp,it,ls,andr 1m
respectively.

LSF Bafch User’s Guide 47

4 Resources

The selection string can combine resource names with logical and arithmetic operators.
Non-zero arithmetic values are treated as logical TRUE, and zero as logical FALSE.
Boolean resources (for example, ser ver to denote LSF server hosts) have a value of
one if they are defined for a host, and zero otherwise.

Table 5 shows the operators that can be used in selection strings. The operators are
listed in order of decreasing precedence.

Table 5. Operators in Resource Requirements

Syntax Meaning

-a Negative of a

la Logical not: 1 if a==0, 0 otherwise

a*b Multiply a and b

al b Dividea by b

a+b Addaandb

a-b Subtract b from a

a>bhb 1 if a is greater than b, O otherwise

a<bhb 1 if ais less than b, O otherwise

a>b 1 if a is greater than or equal to b, O otherwise
a<=b 1 if a is less than or equal to b, O otherwise

a==~>b 1 if aisequal to b, O otherwise

al=»b 1 if a is not equal to b, O otherwise

a &b Logical AND: 1 if both a and b are non-zero, 0 otherwise
al|l b Logical OR: 1 if either a or b is non-zero, 0 otherwise

The selection string is evaluated for each host; if the result is non-zero, then that host
is selected. For example:

select[(swp > 50 && type == MPS) || (swp > 35 && type == ALPHA)]

select[((2*r15s + 3*rilm+ r15n) / 6 < 1.0) && !fs && (cpuf >
4.0)]

For the string resources t ype and nodel , the special value any selects any value and

| ocal selects the same value as that of the local host. For example, t ype==I ocal
selects hosts of the same type as the host submitting the job. If a job can run on any type

48

4

of host, include t ype==any in the resource requirements. If not ype is specified, the
default depends on the command. For | shost s, | sl oad, | snobn and | sl ogi n the
defaultist ype==any. For | spl ace, | srun,| sgrun, and bsub the default is

t ype==l ocal unless a model or Boolean resource is specified, in which case it is

t ype==any.

Order String

The order string allows the selected hosts to be sorted according to the values of
resources. The syntax of the order string is

[-Tres[:[-]res]...

Each res must be a dynamic load index; that is, one of the indicesr 15s,r 1mr 15mut ,
pg,io,ls,it,tnp, swp, mem or an external load index defined by the LSF
administrator. For example, swp: r 1m t np: r 15s is a valid order string.

Note
The values of r 15s, r 1m and r 15mused for sorting are the normalized load indices
returned by | sl oad - N(see ‘Load Indices’ on page 37).

The order string is used for host sorting and selection. The ordering begins with the
rightmost index in the order string and proceeds from right to left. The hosts are sorted
into order based on each load index, and if more hosts are available than were
requested, the LIM drops the least desirable hosts according to that index. The
remaining hosts are then sorted by the next index.

After the hosts are sorted by the leftmost index in the order string, the final phase of
sorting orders the hosts according to their status, with hosts that are currently not
available for load sharing (that is, not in the ok state) listed at the end.

Because the hosts are resorted for each load index, only the host status and the leftmost
index in the order string actually affect the order in which hosts are listed. The other
indices are only used to drop undesirable hosts from the list.

When sorting is done on each index, the direction in which the hosts are sorted
(increasing vs decreasing values) is determined by the default order returned by

| si nf o for that index. This direction is chosen such that after sorting, the hosts are
ordered from best to worst on that index.

LSF Bafch User’s Guide 49

4 Resources

When an index name is preceded by a minus sign ‘-’, the sorting order is reversed so
that hosts are ordered from worst to best on that index.

The default sorting order isr 1m pg (except for | sl ogi n(1): 1 s: r1m.
Resource Usage String

This string defines the expected resource usage of the task. It is used to specify resource
reservations for LSF Batch jobs, or for mapping tasks onto hosts and adjusting the load
when running interactive jobs.

LSF Batch Jobs

For LSF Batch jobs, the resource usage section is used along with the queue
configuration parameter RES_REQ (see ‘Scheduling Conditions’ on page 65). External
indices are also considered in the resource usage string.

The syntax of the resource usage string is

res=val ue[:res=value]...[:res=val ue][:duration=val ue][: decay=val u
e]

The res parameter can be any load index. The value parameter is the initial reserved
amount. If res or value is not given, the default is not to reserve that resource.

The duration parameter is the time period within which the specified resources should
be reserved. It is specified in minutes by default. If the value is followed by the letter
h; itis specified in hours. For example, 'dur at i on=30"and 'dur at i on=2h’specify a
duration of 30 minutes and two hours respectively. If duration is not specified, the
default is to reserve the total amount for the lifetime of the job.

The decay parameter indicates how the reserved amount should decrease over the
duration. A value of 1, 'decay=1’, indicates that system should linearly decrease the
amount reserved over the duration. The default decay value is 0, which causes the total
amount to be reserved for the entire duration. Values other than 0 or 1 are unsupported.
If duration is not specified decay is ignored.

rusage[mem=50: dur at i on=100: decay=1]

50

4

The above example indicates that 50MB memory should be reserved for the job. As the
job runs, the amount reserved will decrease at approximately 0.5 megabytes per
minute until the 100 minutes is up.

LSF Base Jobs

Resource reservation is only available for LSF Batch. If you run jobs using LSF Base,
such as through | sr un, LIM uses resource usage to determine the placement of jobs.
LIM’s placement is limited in comparison to LSF Batch in that the LIM does not track
when an application finishes. Resource usage requests are used to temporarily increase
the load so that a host is not overloaded. When LIM makes a placement advice,
external load indices are not considered in the resource usage string. In this case, the
syntax of the resource usage string is

res[=value]:res[=value]: ... :res[=val ue]

The res is one of the resources whose value is returned by the | sl oad command.

rusage[r 1m=0. 5: men¥20: swp=40]

The above example indicates that the task is expected to increase the 1-minute run
queue length by 0.5, consume 20 Mbytes of memory and 40 Mbytes of swap space.

If no value is specified, the task is assumed to be intensive in using that resource. In
this case no more than one task will be assigned to a host regardless of how many CPUs
it has.

The default resource usage for atask isr 15s=1. 0: r 1n¥1. 0: r 15n¥1. 0. This
indicates a CPU intensive task which consumes few other resources.

Job Spanning String

This string specifies the locality of a parallel job (see ‘Specifying Locality’ on page 104).
Currently only the following two cases are supported:

span[host s=1]
This indicates that all the processors allocated to this job must be on the same host.

span[ptil e=n]

LSF Batfch User’s Guide 51

4 Resources

This indicates that only n processors on each host should be allocated to the job
regardless of how many processors the host possesses.

If span is omitted, LSF Batch will allocate the required processors for the job from the
available set of processors.

Specifying Shared Resources

A shared resource may be used in the resource requirement string of any LSF
command. For example when submitting an LSF Batch job which requires a certain
amount of shared scratch space, you might submit the job as follows:

% bsub -R "avail _scratch > 200 && swap > 50" nyjob

The above assumes that all hosts in the cluster have access to the shared scratch space.
The job will only be scheduled if the value of the "avail_scratch” resource is more than
200MB and will go to a host with at least 50MB of available swap space.

It is possible for a system to be configured so that only some hosts within the LSF
cluster have access to the scratch space. In order to exclude hosts which cannot access
a shared resource, the "defined(resource_name)" function must be specified in the
resource requirement string. For example:

%bsub -R "defined(avail_scratch) &k avail_scratch > 100 & swap > 100" nyj ob
would exclude any hosts which cannot access the scratch resource. The LSF

administrator configures which hosts do and do not have access to a particular shared
resource.

Shared resources can also work together with the resource reservation mechanism of
LSF Batch to prevent over-committing resources when scheduling. To indicate that a
shared resource is to be reserved while a job is running, specify the resource name in
the 'rusage’ section of the resource requirement string. For example:

% bsub -R "sel ect[defined(verilog_ lic)] rusage[verilog |ic=1]" nyjob

would schedule the job on a host when there is verilog license available. The license
will be reserved by the job after it is scheduled, until it completes.

52

Configuring Resource Requirements

Some applications require resources other than the default. LSF can store resource
requirements for specific applications so that the application automatically runs with
the correct resources. For frequently used commands and software packages, the LSF
administrator can set up cluster—wide resource requirements available to all users in
the cluster. See the LSF Batch Administrator’s Guide for more information.

You may have applications that you need to control yourself. Perhaps your
administrator did not set them up for load sharing for all users, or you need a non-
standard setup. You can use LSF commands to find out resource names available in
your system, and tell LSF about the needs of your applications. LSF stores the resource
requirements for you from then on.

Remote Task List File

A task is a UNIX or NT command or a user-created executable program; the terms
application or job are also used to refer to tasks.

The resource requirements of applications are stored in the remote task list file. When
you run a job through LSF, LSF automatically picks up the job’s default resource
requirement string from the remote task list files, unless you explicitly override the
default by specifying the resource requirement string on the command line.

There are three sets of task list files: the system-wide default file | sf . t ask, the cluster
default file | sf . t ask. cluster, and the user file $HOVE/ . | sf t ask. The system and
cluster default files apply to all users. The user file specifies the tasks to be added to or
removed from the system lists for your jobs. Resource requirements specified in your
user file override those in the system lists.

Managing Your Task List

Thel srt asks command inspects and modifies the remote task list. Invoking
| srtasks commands with no arguments displays the resource requirements of tasks
in the remote list, separated from the task name by ‘7.

LSF Batfch User’s Guide 53

4 Resources

%] srt asks

cc/ cpu cfd3d/type == SGL & cpu conpressdir/cpu: mem
f77/ cpu veril og/ cpu && cadence conpr ess/ cpu

dsi mtype == any hspi ce/ cpu & cadence nas/ swp > 200 && cpu
conpress/-: cpu: nem epi/hpuxll sparc regressi on/ cpu
cc/type == | ocal synopsys/ swp >150 && cpu

You can specify resource requirements when tasks are added to the user’s remote task
list. If the task to be added is already in the list, its resource requirements are replaced.

%1 srtasks + nyjob/swap>=100 && cpu

This adds nyj ob to the remote tasks list with its resource requirements.

Using Resource Requirements

Most LSF commands accept a - R resreq argument to specify resource requirements.
The exact behaviour depends on the command; for example, specifying a resource
requirement for the | sl oad command displays the load levels for all hosts that have
the requested resources.

Specifying resource requirements for the | sr un command causes LSF to select the best
host out of the set of hosts that have the requested resources. The - R resreq option
overrides any resource requirements specified in the remote task list. For an example
of the | srun command with the - R resreq option see ‘Running Remote Jobs with Isrun’
on page 140.

54

5. Using LSF Batch

LSF Batch is a distributed batch system for clusters of UNIX and Windows NT
computers. With LSF Batch, you can use a heterogeneous network of computers as a
single system. All batch jobs go through a consistent interface, independent of the
resources they need or the hosts they run on.

LSF Batch has the same view of cluster and master host as the LSF Base, although LSF
Batch may only use some of the hosts in the cluster as servers. The slave batch daemon,
sbat chd, runs on every host that the LSF administrator configures as an LSF Batch
server. The master batch daemon, nbat chd, always runs on the same host as the
master LIM. See ‘Finding the Master’ on page 25 for more information on the master LIM.

This chapter provides important background information on how LSF Batch works
and describes the commands that give information about your LSF Batch system.
Topics include:

= the states of an LSF Batch job

job scheduling policy

listing batch queues

< choosing the right queue for your job

< how LSF Batch decides when and where to run your job
= listing batch server hosts

= user groups and host groups

LSF Bafch User’s Guide 55

5 Using LSF Batch

Baich Jobs

Each LSF Batch job goes through a series of state transitions until it eventually
completes its task, crashes or is terminated. Figure 9 shows the possible states of a job
during its life cycle.

Figure 9. Batch Job States

suitable host found

normal
completion

or abnormal

Many jobs enter only three states:
PEND - waiting in the queue

RUN - dispatched to a host and running
DONE - terminated normally

A job remains pending until all conditions for its execution are met. The conditions
may include:

= Start time specified by the user when the job is submitted

= Load conditions on qualified hosts

56

5

< Time windows during which the job’s queue can dispatch jobs and qualified hosts
accept jobs

= Job limits imposed by the configured policy for each user, queue, and host

= Relative priority to other users and jobs

= Availability of the specified resources

A job may terminate abnormally for various reasons. Job termination may happen
from any state. An abnormally terminated job goes into EXI T state. The situations

where a job terminates abnormally include;

= Thejob is cancelled by its owner or the LSF administrator while pending, or after
being dispatched

< Thejob is not able to be dispatched before it reaches its termination deadline and
thus is aborted by LSF Batch

= The job fails to start successfully. For example, the wrong executable is specified
by the user when the job is submitted

= The job crashes during execution

Jobs may also be suspended at any time. A job can be suspended by its owner, by the
LSF administrator or by the LSF Batch system. There are three different states for
suspended jobs:

PSUSP - suspended by its owner or the LSF administrator while in PEND state

USUSP - suspended by its owner or the LSF administrator after being dispatched
SSUSP - suspended by the LSF Batch system after being dispatched

After a job has been dispatched and started on a host, it is suspended by the LSF Batch
system if the load on the execution host or hosts becomes too high. In such a case, batch
jobs could be interfering among themselves or could be interfering with interactive
jobs. In either case, some jobs should be suspended to maximize host performance or

to guarantee interactive response time. LSF Batch suspends jobs according to their
priority.

LSF Bafch User’s Guide 57

5 Using LSF Batch

When a host is busy, LSF Batch suspends lower priority jobs first unless the scheduling
policy associated with the job dictates otherwise. A job may also be suspended by the
system if the job queue has a time window and the current time goes outside the time
window.

A system suspended job can later be resumed by LSF Batch if the load condition on the
execution host becomes good enough or when the closed time window of the queue
opens again.

Fairshare Scheduling Policy

The default First-Come-First-Served (FCFS) job scheduling is often insufficient for an
environment with competing users. Fairshare scheduling is an alternative to the
default FCFS scheduling. Fairshare scheduling divides the processing power of the
LSF cluster among users and groups to provide fair access to resources. Fairshare is not
necessarily equal share. Your cluster administrator can configure shares for users or
groups to achieve controlled accesses to resources.

Your LSF cluster administrator defines fairshare policies by assigning shares to users
or groups. The special names ot her s and def aul t can also be assigned shares.

The name ot her s is a virtual group referring to all other users not explicitly listed in
the share parameter. For example, product group may be assigned 100 shares, while
all others together assigned 10 shares.

The name def aul t is a virtual user referring to each of the other users not explicitly
configured in the share parameter. For example, if the pr oduct group is assigned 100
shares and def aul t user assigned 10 shares, then every user not belonging to the

pr oduct group will have 10 shares, as if their user names were explicitly listed in the
share parameter. As a special case, if def aul t is the only user name in the share
parameter, it implements the equal share policy.

LSF Batch uses an account to maintain information about shares and resource
consumption of every user or group. A dynamic priority is calculated for each user or
group according to configured shares, CPU time consumed (CPU time used for
fairshare is not normalized by the host CPU speed factors) for the past HIST_HOURS
hours (see ‘Configuration Parameters’ on page 85), number of jobs currently running, and

58

5

the total elapsed time of jobs. This dynamic priority is then used to decide which user’s
or group’s jobs should be dispatched first. If some users or groups have used less than
their fairshare of the resources, their pending jobs (if any) are scheduled next, jumping
ahead of jobs of other users.

Note
The CPU time used for host partition scheduling is not normalized by the host CPU
speed factors.

LSF Batch provides three different varieties of fairshare configuration. These are queue
level fairshare, host partition fairshare, and hierarchical fairshare.

Host Partition Fairshare Scheduling

Host partition fairshare scheduling allows sharing policy to be defined for a group of
hosts, rather than in a queue. A host partition specifies a group of hosts together with
share allocations among the users or groups. A special host name al | can be used to
refer to all hosts used by LSF Batch.

Note that only users or groups who are configured to use the host partition can run
jobs on these hosts.

Fairshare defined by host partition applies to all queues that run jobs on these hosts.
To find out what host partitions are configured in your cluster, run ’bhpart’ command.
Note

Host partition fairshare is an alternative to queue level fairshare scheduling. You
cannot use both in the same LSF cluster.

Queue-Level Fairshare Scheduling

Fairshare policy can be defined at the queue level to allow different policies to be
applied for different queues. Queue-level fairshare handles resource contention
among user jobs within the same queue.

To find out if a queue has fairshare defined, run the bqueues -1 command. Your

queue has fairshare defined if you see the parameter "USER_SHARES" in the output of
the above command.

LSF Bafch User’s Guide 59

5 Using LSF Batch

Note
Queue level fairshare scheduling is an alternative to host partition fairshare
scheduling. You cannot use both in the same LSF cluster.

Hierarchical Fairshare

When assigning shares in the fairshare queue or host partition to a user group, each
member of the group can be given the same share, or all members are collectively given
the share. When the share is collectively assigned, the share each member receives
depends on the size of the group and the number of jobs submitted by its members.

With large user groups, it is desirable that the shares assigned to a group are
subdivided among subgroups. The shares may be further partitioned within
subgroups to create a hierarchical share assignment. Figure 10 gives an example of how
an engineering department might want to configure sharing among several groups.

Figure 10. Sample Fairsharing Configuration

Engineering
25%) 50% 25% |
Technical
Support Devel opment Research
50% | 359 15% 80% 20%
Test Application Systems Chip X ChipY
50% | 50% | 80% 20%
User 1 User 2 User 3 User 4

The situation pictured in Figure 10 is a share tree in which users are organized into
hierarchical groups. Shares are assigned to users or groups at each level in the
hierarchy. In the above example, the Development group will get the largest share
(50%) of the resources in the event of contention. Shares assigned to the Development
group can be further divided among the Systems, Application and Test groups which

60

5

receive 50%, 35%, and 15%, respectively. At the lowest level, individual users may be
allocated shares of the immediate group they belong to.

Each node in the share tree represents either a group account or a user account. A user
account corresponds to an individual user who runs jobs while a group account allows
for assigning shares collectively to a group and subdividing the shares amongst its
members. Note that user accounts are leaf nodes in the share tree while group accounts
are always non-leaf nodes. The resource consumption of a group account is the total of
the consumption of all users accounts defined recursively under that group. By
assigning shares to groups, the administrator can control the rate of allocation of
resources to all members of the group.

LSF Batch implements hierarchical fairshare in two steps. First, define hierarchical
share distribution by defining hierarchical user groups as discussed above. Second, use
the hierarchical share distribution in queue-level fairshare or host partition fairshare
definitions. When a fairshare policy uses a group name that represents a hierarchical
share distribution, it allocates resources according to the share distribution as if the
hierarchy were defined inside the policy.

Hierarchical share distribution information can be displayed by the bugr oup
command with - | option. See ‘Viewing Hierarchical Share Information’ on page 82 for
more information.

Each host partition or queue is considered a share provider and may specify its own
fairshare hierarchy for controlling the allocation of resources to its users. For example,
a user or group may have large shares in one queue but a small share in the other.
When a share provider selects a job to run it searches the share tree from the top and
picks the node at each level with the highest priority until a leaf node corresponding
to a user is encountered. A job from that user is selected and dispatched if a suitable
host is found and that user’s priority together with that of its parent groups is updated.
As a user or group account dispatches jobs, its priority will decrease, giving other users
or groups a chance to access the resources.

As a user you can belong to one or more of the groups in the share tree. There will be
a separate user account for each group you belong to. The priority of your jobs will be
affected by the group’s share assignment. When there is contention for resources
among the groups, the system will favour those groups with a larger share. Users
belonging to multiple groups can specify the share account that will be used to
determine the priority of each job. Note that a given user may not have an account

LSF Batfch User’s Guide 61

5 Using LSF Batch

under a particular group. In the previous example, 'User3’ does not have an account
under the 'ChipX’ group.

Other Scheduling Policies

This section discusses other LSF Batch scheduling policies. All these policies can co-
exist in the same system.

Preemptive Scheduling

When LSF Batch schedules jobs, those in higher priority queues are considered first.
Jobs in lower priority queues are only started if all higher priority jobs are waiting for
specified resources, hosts, starting times, or other constraints.

When a high priority job is ready to run, all the LSF Batch server hosts may already be
running lower priority jobs. The high priority job ends up waiting for the low priority
jobs to finish. If the low priority jobs take a long time to complete, the higher priority
jobs may be blocked for an unacceptably long time.

LSF solves this problem by allowing preemptive scheduling within LSF Batch queues.
Jobs pending in a preemptive queue can preempt lower priority jobs on a host by
suspending them and starting the higher priority jobs on the host.

A queue can also be defined as preemptable. In this case, jobs in higher priority queues
can preempt jobs in the preemptable queue even if the higher priority queues are not
specified as preemptive.

Note
When the preemptive scheduling policy is used, jobs in preemptive queues may violate
the user or host job slot limits. However, LSF Batch ensures that the total number of
slots used by running jobs (excluding jobs that are suspended) does not exceed the job
slot limits. This is done by suspending lower priority jobs.

62

Exclusive Scheduling

Some queues accept exclusive jobs. A job can run exclusively only if it is submitted
with the - x option to the bsub command specifying a queue that is configured to
accept exclusive jobs. An exclusive job runs by itself on a host — it is dispatched only
to a host with no other batch jobs running and LSF does not send any other jobs to the
host until the exclusive job completes.

Once an exclusive job is started on a host, the LSF Batch system locks that host out of
load sharing by sending a request to the underlying LSF to change the host’s status to
I ockU. The host is no longer available for load sharing by any other task (either
interactive or batch) until the exclusive job finishes.

Processor Reservation

The scheduling of parallel jobs supports the notion of processor reservation. Parallel
jobs requiring a large number of processors can often not be started if there are many
lower priority sequential jobs in the system. There may not be enough resources at any
one instant to satisfy a large parallel job, but there may be enough to allow a sequential
job to be started. With the processor reservation feature the problem of starvation of
parallel jobs can be reduced.

When a parallel job cannot be dispatched because there aren't enough execution slots
to satisfy its minimum processor requirements, the currently available slots will be
reserved for the job. These reserved job slots are accumulated until there are enough
available to start the job. When a slot is reserved for a job it is unavailable to any other
job.

To use this feature, a queue must have processor reservation policy enabled through
the SLOT_ RESERVE parameter (see ‘Processor Reservation for Parallel Jobs’ on page 211 of
the LSF Batch Administrator’s Guide). To avoid deadlock situations, the period of
reservation is specified through the MAX_RESERVE_TI ME parameter. The system will
accumulate reserved slots for a job until MAX_RESERVE_TI ME minutes and if an
insufficient number have been accumulated, all slots are freed and made available to
other jobs. The MAX_RESERVE_TI ME parameter takes effect from the start of the first
reservation for a job and a job can go through multiple reservation cycles before it
accumulates enough slots to be actually started.

LSF Batfch User’s Guide 63

5 Using LSF Batch

Reserved slots can be displayed with the bj obs command. The number of reserved
slots can be displayed with the bqueues, bhost s, bhpart, and buser s commands.
Look in the RSV column.

Backfill Scheduling

Processor reservation ensures that large parallel jobs will not suffer processor
starvation. However, in a heavily loaded LSF Batch system with jobs requiring a
varying number of processors, a large number of parallel jobs submitted earlier may
keep reserving processors. In such cases, FCFS discipline imposes long average wait
times on each job, and thereby degrades the system’s utilization as many available
processor slots are reserved but not used. Backfill policy allows jobs requiring fewer
processors and running for shorter periods of time to use the processors reserved by
the larger parallel jobs, if these smaller jobs will not delay the start of any of the large
parallel jobs.

Since jobs that are backfilled cannot delay the start of that jobs that reserved the job
slots, backfilled jobs will not be preempted in any case.

Scheduling Parameters

Scheduling parameters specify the load conditions under which pending jobs are
dispatched, running jobs are suspended, and suspended jobs are resumed. These
parameters are configured by the LSF administrator in a variety of ways.

Load Thresholds

Load thresholds can be configured by your LSF administrator to schedule jobs in
queues. There are two possible types of load thresholds: | oadSched and | oadSt op.
Each load threshold specifies a load index value. A | oadSched threshold is the
scheduling threshold which determines the load condition for dispatching pending
jobs. If a host’s load is beyond any defined | oadSched, a job will not be started on the
host. This threshold is also used as the condition for resuming suspended jobs. A

| oadSt op threshold is the suspending condition that determines when running jobs
should be suspended.

64

5

Thresholds can be configured for each queue, for each host, or a combination of both.
To schedule ajob on a host, the load levels on that host must satisfy both the thresholds
configured for that host and the thresholds for the queue from which the job is being

dispatched.

The value of a load index may either increase or decrease with load, depending on the
meaning of the specific load index. Therefore, when comparing the host load
conditions with the threshold values, you need to use either greater than (>) or less
than (<), depending on the load index.

When jobs are running on a host, LSF Batch periodically checks the load levels on that
host. If any load index exceeds the corresponding per-host or per-queue suspending
threshold for a job, LSF Batch suspends the job. The job remains suspended until the
load levels satisfy the scheduling thresholds.

To find out what parameters are configured for your cluster, see ‘Detailed Queue
Information’ on page 69 and ‘Batch Hosts’ on page 79.

Scheduling Conditions

Scheduling conditions are a more general way for specifying job dispatching
conditions at the queue level. Three parameters, RES REQ STOP_COND and
RESUME_COND, can be specified in the definition of a queue. These parameters take
resource requirement strings as values (see ‘Resource Requirement Strings’ on page 46 for
more details) which results in a more flexible specification of conditions than load
threshold.

The resource requirement conditions for dispatching a job to a host can be specified
through the queue level RES_REQparameter (see ‘Queue-Level Resource Requirement’ on
page 213 of the LSF Batch Administrator’s Guide for further details). This parameter
provides an alternative for ‘loadshare’ as described in ‘Load Thresholds’ on page 64.

You can also specify the resource requirements for your job using the - R option to the
bsub command. If you specify resource requirements that are already defined in the
queue, the host must satisfy both requirements to be eligible for running the job. In
some cases, the queue specification sets an upper or lower bound on a resource. If you
attempt to exceed that bound, your job will be rejected.

The condition for suspending a job can be specified using the queue level STOP_COND
parameter. It is defined by a resource requirement string (see ‘Suspending Condition’ on

LSF Batfch User’s Guide 65

5 Using LSF Batch

page 215 of the LSF Batch Administrator’s Guide). The stopping condition can only be
specified in the queue. This parameter provides similar but more flexible function for
| oadSt op as described in ‘Load Thresholds’ on page 64.

The resource requirement conditions that must be satisfied on a host before a
suspended job can be resumed is specified using the queue level RESUVE _COND
parameter (for more detail see ‘Resume Condition’ on page 215 of the LSF Batch
Administrator’s Guide). The resume condition can only be specified in the queue.

To find out details about the parameters of your cluster, see ‘Detailed Queue Information’
on page 69 and ‘Batch Hosts’ on page 79.

Time Windows for Queues and Hosts

Separate time windows can be defined to control when jobs can be dispatched and
when they are to be suspended.

Run Windows

Run windows are time windows during which jobs are allowed to run. When the
windows are closed, running jobs are suspended and no new jobs are dispatched. The
default is no restriction, or always open. Run windows can only be defined for queues
(see ‘Detailed Queue Information’ on page 69).

Note
These windows are only applicable to batch jobs. Interactive jobs scheduled by the Load
Information Manager (LIM) of LSF are controlled by another set of run windows (see
‘Listing Hosts’ on page 27).

Dispatch Windows

Dispatch windows are time windows during which jobs are allowed to be started.
However, dispatch windows have no effect on jobs that have already started. This
means that jobs are allowed to run outside the dispatch windows, but no new jobs will
be started. The default is no restriction, or always open. Note that no jobs are allowed
to start when the run windows are closed. Dispatch windows can be defined for both

66

5

queues (see ‘Detailed Queue Information’ on page 69) and batch server hosts (see ‘Batch
Hosts’ on page 79).

Batch Queues

Batch queues represent different job scheduling and control policies. All jobs submitted
to the same queue share the same scheduling and control policy. Batch queues do not
correspond to individual hosts; each job queue can use all server hosts in the cluster,
or a configured subset of the server hosts.

The LSF administrator can configure job queues to control resource accesses by
different users and types of application. Users select the job queue that best fits each
job.

Finding Out What Queues Are Available

The bqueues command lists the available LSF Batch queues.

% bqueues

QEE NME PRO STATUS MX JUVUJUPJUHNGS PEND RN SUSP
interactive 400 (pen:Active - - - - 2 0 2 0
priority 43 Qpen: Active - - - - 16 4 1 1
ni ght 40 Qpen: I nactive - - - - 4 4 0 0
short 35 Qpen: Active - - - - 6 1 5 0
Iicense 33 Qpen: Active - - - - 0 0 0 0
nor nal 30 Qpen: Active - - - - 0 0 0 0
idle 20 Qpen: Active - - - - 6 3 1 2

The PRI Ocolumn gives the priority of the queue. The bigger the value, the higher the
priority. Queue priorities are used by LSF Batch for job scheduling and control. Jobs
from higher priority queues are dispatched first. Jobs from lower priority queues are
suspended first when hosts are overloaded.

The STATUS column shows the queue status. A queue accepts new jobs only if it is open

and dispatches jobs only if it is active. A queue can be opened or closed only by the LSF
administrator. Jobs submitted to a queue that is later closed are still dispatched as long

LSF Batfch User’s Guide 67

5 Using LSF Batch

as the queue is active. A queue can be made active or inactive either by the LSF
administrator or by the run and dispatch windows of the queue.

The MAX column shows the limit on the number of jobs dispatched from this queue at
one time. This limit prevents jobs from a single queue from using too many hosts in a
cluster at one time.

The JL/ Ucolumn shows the limit on the number of jobs dispatched at one time from
this queue for each user. This prevents a single user from occupying too many hosts in
a cluster while other users’ jobs are waiting in the queue.

The JL/ P column shows the limit on the number of jobs from this queue dispatched to
each processor. This prevents a single queue from occupying too many of the resources
on a host.

The JL/ Hcolumn shows the maximum number of job slots a host can allocate for this
queue. This limit controls the number of job slots for the queue on each host, regardless
of the type of host: uniprocessor or multiprocessor.

The NJOBS column shows the total number of job slots required by all jobs in the
queue, including jobs that have not been dispatched and jobs that have been
dispatched but have not finished.

Note
A parallel job with N components would require N job slots.

The PEND column shows the number of job slots needed by pending jobs in this queue.
The RUN column shows the number of job slots used by running jobs in this queue.

The SUSP column shows the number of job slots required by suspended jobs in this
queue.

68

Detailed Queue Information

The -1 option to the bqueues command displays the complete status and
configuration for each queue. You can specify queue names on the command line to
select specific queues:

% bqueues -1 nor nal

QUEUE: nor nal

For normal low priority jobs, running only if hosts are lightly | oaded.
This is the default queue.

PARAVETERS/ STATI STI CS

PRIO NICE STATUS MAX JL/U JL/P NJOBS PEND RUN SSUSP USUSP
40 20 Open: Active 100 50 11 1 1 0 O 0
Mgration threshold is 30 mn.

CPULIM T RUNLIM T
20 min of I1BMB50 342800 nin of |BM50

FILELIMT DATALIMT STACKLIMT CORELIMT MEMIMT PROCLIMT
20000 K 20000 K 2048 K 20000 K 5000 K 3

SCHEDULI NG PARAMETERS

ris5s rl1lm r15m ut pg io Is it tnp sw nem
| oadSched - 0.7 1.0 0.2 4.0 50 - - - - -
| oadStop - 1.5 2.5 - 8.0 240 - - - - -

SCHEDULI NG POLI CI ES: FAI RSHARE PREEMPTI VE PREEMPTABLE EXCLUSI VE
USER SHARES: [groupA, 70] [groupB, 15] [default, 1]

DEFAULT HOST SPEC FI CATI ON : | BMB50
RUN_W NDOAG: 2: 40-23: 00 23: 30-1: 30
DI SPATCH W NDOAG: 1: 00-23: 50

USERS: groupA/ groupB/ user5
HOSTS: host A, hostD, hostB

LSF Bafch User’s Guide 69

5 Using LSF Batch

ADM NI STRATCRS: user?

PRE _EXEC. /tnp/apex_pre.x > /tnp/preexec.|log 2>&1
POST_EXEC. /tnp/apex_post.x > /tnp/ postexec.|log 2>&1
REQUEUE_EXI T_VALUES: 45

Thebqueues -1 command only displays fields that apply to the queue. Any field that
is not displayed has a default value that does not affect job scheduling or execution. In
addition to the fields displayed by the default bqueues command, the fields that may
be displayed are:

DESCRI PTI ON
A description of the typical use of the queue.

Def aul t queue i ndication
Indicates that this is the default queue.

SSUSP
The number of job slots required by jobs suspended by the system because of
load levels or run windows.

USUSP
The number of jobs slots required by jobs suspended by the user or the LSF
administrator.

RSV
The numbers of job slots in the queue that are reserved by LSF Batch for
pending jobs.

M gration threshol d
The time that a job dispatched from this queue will remain suspended by the
system before LSF Batch attempts to migrate the job to another host.

CPULIMT
The maximum CPU time a job can use, in minutes relative to the CPU factor of
the named host. CPULI M T is scaled by the CPU factor of the execution host
so that jobs are allowed more time on slower hosts.

When the job-level CPULI M T is reached, the system sends SI GXCPU o all
processes belonging to the job.

70

RUNLIM T
The maximum wall clock time a process can use, in minutes. RUNLI M T is
scaled by the CPU factor of the execution host. When a job has been in the RUN
state for a total of RUNLI M T minutes, LSF Batch sends a SI GUSR2 signal to
the job. If the job does not exit within 10 minutes, LSF Batch sends a SI GKI LL
signal to kill the job.

FILELIMT
The maximum file size a process can create, in kilobytes. This limit is enforced
by the UNIXsetr | i m t systemcallifitsupportsthe RLI M T_FSI ZE option,
or theul i mi t system call if it supports the UL_SETFSI ZE option.

DATALIM T
The maximum size of the data segment of a process, in kilobytes. This restricts
the amount of memory a process can allocate. DATALI M T is enforced by the
setrlimt system call if it supports the RLI M T_DATA option, and
unsupported otherwise.

STACKLIM T
The maximum size of the stack segment of a process, in kilobytes. This restricts
the amount of memory a process can use for local variables or recursive
function calls. STACKLI M T is enforced by the set r | i mi t system call if it
supports the RLI M T_STACK option.

CORELIMT
The maximum size of a core file, in kilobytes. This limit is enforced by the
setrlimt system call if it supports the RLI M T_CORE option.

MEMLIM T
The maximum running set size (RSS) of a process, in kilobytes. If a process
uses more than MEMLI M T kilobytes of memory, its priority is reduced so that
other processes are more likely to be paged in to available memory. This limit
is enforced by the set r | i m t system call if it supports the RLI M T_RSS
option.

PROCLIM T

The maximum number of processors allocated to a job. Jobs requesting more
processors than the queue’s PROCLI M T are rejected.

LSF Batfch User’s Guide 71

5 Using LSF Batch

PROCESSLIM T
The maximum number of concurrent processes allocated to a job. If
PROCESSLI M T is reached, the system sends the following signals in sequence
to all processes belonging to the job: SI G NT, SI GTERM and S| GKI LL.

SWAPLIM T
The swap space limit that a job may use. If SWAPLI M T is reached, the system
sends the following signals in sequence to all processes in the job: SI G NT,
S| GTERM and SI GKI LL.

| oadSched
The load thresholds LSF Batch uses to determine whether a pending job in this
gueue can be dispatched to a host, and to determine when a suspended job can
be resumed. The load indices are explained in ‘Load Indices’ on page 37.

| oadSt op
The load thresholds LSF Batch uses to determine when to suspend a running
batch job in this queue.

SCHEDULI NG PQLI CI ES
Scheduling policies of the queue. Optionally, one or more of the following
policies may be configured:

FAlI RSHARE
Jobs in this queue are scheduled based on a fairshare policy. In general, a job
will be dispatched before other jobs in this queue if the job’s owner has more
shares (see USER_SHARES below), fewer running jobs, and has used less CPU
time in the recent past, and the job has waited longer. If all the users have the
same shares, jobs in this queue are scheduled in a round-robin fashion.

If the fairshare policy is not specified, jobs in this queue are scheduled based
on the conventional first-come-first-served (FCFS) policy. That is, jobs are
dispatched in the order they were submitted.

PREEMPTI VE
Jobs in this queue may preempt running jobs from lower priority queues. That
is, jobs in this queue may still be able to start even though the job limit of a host
or a user has been reached, as long as some of the job slots defined by the job
limit are taken by jobs from those queues whose priorities are lower than the
priority of this queue. Jobs from lower priority queues will be suspended to
ensure that the running jobs (excluding suspended jobs) are within the

72

5

corresponding job limit. If the preemptive policy is not specified, the default is
not to preempt any job.

PREEMPTABLE
Jobs in this queue may be preempted by jobs in higher priority queues, even if
the higher priority queues are not specified as preemptive.

EXCLUSI VE
Jobs dispatched from this queue can run exclusively on a host if the user so
specifies at job submission time (see ‘Other bsub Options’ on page 112). Exclusive
execution means that the job is sent to a host with no other batch jobs running
there, and no further job—batch or interactive—will be dispatched to that host
while the job is running. The default is not to allow exclusive jobs.

BACKFI LL
Parallel jobs can reserve job slots on hosts so that they are not prevented from
executing if they are competing with jobs requiring fewer processors (as
specified via bsub - n). This maximum slot reservation time controls how
long, in seconds, a slot is reserved for a job. The backfill policy allows a site to
make use of the reserved slots for short jobs without delaying the starting time
of the parallel job doing the reserving.

The run limit of currently started jobs is used to compute the estimated start
time of a job when backfilling is enabled. A job can backfill the reserved slots
of another job if it will finish, based on its run limit, before the estimated start
time of the backfilled job. Jobs in a backfill queue can backfill any jobs which
are reserving slots. If backfilling is enabled, the estimated start time of a job can
be viewed using bj obs -1 . LSF Batch provides support for Backfill at the
queue level.

USER_SHARES
A list of [username, share] pairs. username is either a user name or a user group
name. share is the number of shares of resources assigned to the user or user
group. A party will get a portion of the resources proportional to the party’s
share divided by the sum of the shares of all parties specified in this queue.

DEFAULT HOST SPECI FI CATI ON
A host name or host model name. The appropriate CPU scaling factor of the
host or host model (see | si nf 0(1)) is used to adjust the actual CPU time limit
at the execution host (see CPULI M T above). This specification overrides the

LSF Batfch User’s Guide 73

5 Using LSF Batch

system default DEFAULT_ HOST _SPEC (see ‘Configuration Parameters’ on
page 85).

RUN_W NDOWS
One or more run windows in a week during which jobs in this queue may
execute. When a queue is out of its window or windows, no job in this queue
will be dispatched. In addition, when the end of a run window is reached, any
running jobs from this queue are suspended until the beginning of the next run
window, when they are resumed. The default is no restriction, or always open.

A window is displayed in the format of begin_time-end_time. Time is specified
in the format of [day:]hour[:minute], where all fields are numbers in their
respective legal ranges: 0(Sunday)-6 for day, 0-23 for hour, and 0-59 for
minute. The default value for minute is 0 (on the hour). The default value for
day is every day of the week. The begin_time and end_time of a window are
separated by "-’, with no blank characters (SPACE or TAB) in between. Both
begin_time and end_time must be present for awindow. Windows are separated
by blank characters. If only the character "-’ is displayed, the windows are
always open.

DI SPATCH_W NDOWB
One or more dispatch windows in a week during which jobs in this queue may
be dispatched to run. When a queue is out of its windows, no job in this queue
can be dispatched. Jobs already dispatched are not affected by the dispatch
windows. The default is no restriction, or always open. Dispatch windows are
displayed in the same format as run windows (see RUN_W NDOWS above).

USERS
The list of users allowed to submit jobs to this queue.

HOSTS
The list of hosts to which this queue can dispatch jobs.

NQS DESTI NATI ON QUEUES
The list of NQS queues to which this queue can dispatch jobs.

ADM NI STRATCORS

A list of administrators of the queue. The users whose names are specified here
are allowed to operate on the jobs in the queue and on the queue itself.

74

JOB_STARTER
An executable file that runs immediately prior to the batch job, taking the
batch job file as an input argument. All jobs submitted to the queue are run via
the job starter, which is generally used to create a specific execution
environment before processing the jobs themselves.

PRE_EXEC
Queue’s pre-execution command. This command is executed before the real
batch job is run on the execution host (or on the first host selected for a parallel
batch job).

POST_EXEC
Queue’s post-execution command. This command is executed on the
execution host when a job terminates.

REQUEUE_EXI T_VALUES
Jobs that exit with these values are automatically requeued.

RES_REQ
Resource requirements of the queue. Only the hosts that satisfied this resource
requirement can be used by the queue.

RESUVME_COND
The condition(s) that must be satisfied to resume a suspended job on a host.

STOP_COND
The condition(s) which determine whether a job running on a host should be
suspended.

Note that some parameters are displayed only if they are defined.

Automatic Queue Selection

When more than one batch queue is available, you need to decide which queue to use.
If you submit a job without specifying a queue name, the LSF Batch system
automatically chooses a suitable queue for the job from the candidate default queues,
based on the requirements of the job.

LSF Batfch User’s Guide 75

5 Using LSF Batch

Specifying Default Queues

LSF Batch has default queues. The bpar ans command displays them:
% bpar anms

Def aul t Queues: nor mal

The user can override this list by defining the environment variable
LSB_DEFAULTQUEUE.

Queue Selection Mechanism

Although simple to use, automatic queue selection may not behave as expected, if you
do not choose your candidate queues properly. The criteria LSF Batch uses for selecting
a suitable queue are as follows:

= User access restriction. Queues that do not allow this user to submit jobs are
discarded

= Host restriction. If the job explicitly specifies a list of hosts on which the job can be
run, then the selected queue must be configured to send jobs to all hosts in the list

= Queue status. Closed queues are not considered

= Exclusive execution restriction. If the job requires exclusive execution, then queues
that are not configured to accept exclusive jobs are discarded

= Job’s requested resources. These must be within the resource limits of the selected
queue

If multiple queues satisfy the above requirements, then the first queue listed in the

candidate queues (as defined by DEFAULT _QUEUE or LSB_DEFAUL TQUEUE) that
satisfies the requirements is selected.

76

Choosing a Queue

The default queues are normally suitable to run most jobs for most users, but they may
have a very low priority or restrictive execution conditions to minimize interference
with other jobs. If automatic queue selection is not satisfactory, you should choose the
most suitable queue for each job.

The factors affecting your decision are user access restrictions, size of the job, resource
limits of the queue, scheduling priority of the queue, active time windows of the
queue, hosts used by the queue, the scheduling load conditions, and the queue
description displayed by the bqueues -1 command.

The - u user_name option specifies a user or user group so that bqueues displays only
the queues that accept jobs from these users.

The - m host_name option allows users to specify a host name or host group name so
that bqueues displays only the queues that use these hosts to run jobs.

You must also be sure that the queue is enabled.

The following examples are based on the queues defined in the default LSF
configuration. Your LSF administrator may have configured different queues.

To run a job during off hours because the job generates very high load to both the file
server and the network, you can submit it to the night queue; use bsub -qg ni ght .

If you have an urgent job to run, you may want to submit it to the priority queue; use
bsub -q priority.

If you want to use hosts owned by others and you do not want to bother the owners,
you may want to run your low priority jobs on the idle queue so that as soon as the
owner comes back, your jobs get suspended.

If you are running small jobs and do not want to wait too long to get the results, you
can submit jobs to the short queue to be dispatched with higher priority. Make sure
your jobs are short enough that they are not killed for exceeding the CPU time limit of
the queue (check the resource limits of the queue, if any).

LSF Batfch User’s Guide 77

5 Using LSF Batch

If your job requires a specific execution environment, you may need to submititto a
queue that has a particular job starter defined. Because only your system administrator
is able to specify a queue-level job starter as part of the queue definition, you should
check with him for more information. See ‘Queue-Level Job Starters’ on page 129 of the
LSF Batch Administrator’s Guide for information on queue-level job starters.

Batch Users

The buser s command displays the maximum number of jobs a user or group may
execute on a single processor, the maximum number of job slots a user or group may
use in the cluster, the total number of job slots required by all submitted jobs of the
user, and the number of job slots in the PEND, RUN, SSUSP, and USUSP states. If no user
is specified, the default is to display information about the user who invokes this
command. Here is an example of the output from the buser s command:

% busers all

USER/ GROUP JL/P NMAX NJOBS PEND RUN SSUSP USUSP RSV
def aul t 1 12 - - - - - -
user9 1 12 34 22 10 2 0 0
gr oupA - 100 20 7 11 1 1 0

Note that if the reserved user name al | is specified, buser s reports all users who
currently have jobs in the system, as well as def aul t , which represents a typical user.
The purpose of listing def aul t in the output is to show the job slot limits (JL/ Pand
MAX) of a typical user. No other parameters make sense for def aul t .

Note

The counters displayed by buser s treat a parallel job requesting N processors the
same as N jobs requesting one processor.

78

Batch Hosts

LSF Batch uses some (or all) of the hosts in an LSF cluster as execution hosts. The host
list is configured by the LSF administrator. The bhost s command displays
information about these hosts.

% bhost s

HOST _NAMVE STATUS JL/ U NMAX NJOBS RUN SSUSP USUSP RSV
host A ok 2 2 0 0 0 0 0
host D ok 2 4 2 1 0 0 1
host B ok 1 2 2 1 0 1 0

STATUS gives the status of the host and the sbat chd daemon. If a host is down or the
LIM is unreachable, the STATUS is unavai | . If the LIM is reachable but the sbat chd
is not up, STATUS is unr each.

JL/ Uis the job slot limit per user. The host will not allocate more than JL/ Ujob slots
for one user at the same time. MAX gives the maximum number of job slots that are
allowed on this host. This does not mean that the host has to always allocate this many
job slots if there are waiting jobs; the host must also satisfy its configured load
conditions to accept more jobs.

The columns NJOBS, RUN, SSUSP, USUSP, and RSV show the number of job slots used
by jobs currently dispatched to the host, running on the host, suspended by the system,
suspended by the user, and reserved on the host respectively.

The - | option to the bhost s command gives all information about each batch server
host such as the CPU speed factor and the load threshold values for starting, resuming

LSF Batfch User’s Guide 79

5 Using LSF Batch

and suspending jobs. You can also specify host names on the command line to list the
information for specific hosts.

% bhosts -1 hostB

HOST: host B
STATUS CPUF JL/U MAX NJOBS RUN SSUSP USUSP RSV DI SPATCH W NDONS
ok 9 1 2 2 1 0 0 1 2: 00-20: 30

ri5s rlm rl15m ut pg io Is it tnp swWp nem
| oadSched - - - - - - - - - - -
|oadSop - - - - 40 - - - - - -

Mgration threshold is 40 mn.
Files are copied at checkpoint.

The DI SPATCH_W NDOWS column shows the time windows during which jobs can be
started on the host. See ‘Detailed Queue Information’ on page 69 for a description of the
format of the DI SPATCH_W NDOWS5 column. Unlike the queue run windows, jobs are
not suspended when the host dispatch windows close. Jobs running when the host
dispatch windows close continue running, but no new jobs are started until the
windows reopen.

CPUF is the host CPU factor. | oadSched and | oadSt op are the scheduling and
suspending thresholds for the host. If a threshold is not defined, the threshold from the
queue definition applies. If both the host and the queue define a threshold for a load
index, the most restrictive threshold is used.

The migration threshold is the time that a job dispatched to this host can remain
suspended by the system before LSF Batch attempts to migrate the job to another host.

If the host’s operating system supports checkpoint copy, this is indicated here. With
checkpoint copy, the operating system automatically copies all open files to the
checkpoint directory when a process is checkpointed. Checkpoint copy is currently
supported only on ConvexQOS and Cray systems.

80

User and Host Groups

The LSF administrator can configure user and host groups. The group names act as
convenient aliases wherever lists of user or host names can be specified on the
command line or in configuration files. The administrator can also limit the total
number of running jobs belonging to a user or a group of users. User groups can also
be defined to reflect the hierarchical share distribution, as discussed in ‘Hierarchical
Fairshare’ on page 60.

The bugr oup and brgr oup commands list the configured group names and members
for user and host groups respectively.

% bugr oup acct_users
GROUP_NAME USERS
acct_users : userl user2 user4 groupl/

Note that if a name is ended by a ‘/’, it is a group.

% bngr oup bi g_servers
GROUP_NAME HOSTS
bi g_servers : hostD hostK

Specifying a user or host group to an LSF Batch command is the same as specifying all
the user or host names in the group. For example, the command bsub -m

bi g_server s specifies that the job may be dispatched to either of the hosts hostD or
hostK. The command bj obs -1 lists detailed information about the job, including the
specified hosts and the load thresholds that apply to the job.

% bsub -m bi g _servers nyjob
Job <31556> is subnmitted to default queue <nornmal >.

LSF Batfch User’s Guide 81

5 Using LSF Batch

% bj obs -1 31556

Job Id <31556>, User <user1>, Status <DONE>, Queue <nornal >, Comm

and <host name>

Thu Qct 27 01:47:51: Submitted fromhost <hostA>, CWND <$HOVE>,
Speci fied Hosts <bi g_servers>;

Thu Qct 27 01:47:52: Started on <host K>;

Thu Qct 27 01:47:53: Done successfully. The CPU tine used is 0.2
seconds.

ri5s rim rl15m wut pg io Is it tnmp sw nem

| oadSched - - - - - - - - 12 -
| oadSt op - - - - 55 - - - - - -

Viewing Hierarchical Share Information

The hierarchical share distribution can be displayed by the bugr oup command with -
| option. The following gives an example of a system consisting of three groups:

% bugr oup -1

GROUP_NAME: g0

USERS: gl/ g2/

SHARES: [g2, 20] [gl, 10]
GROUP_NAME: g1

USERS: userl user2 user3
SHARES: [others, 10] [user3, 4]
GROUP_NAME: g2

USERS: all users

SHARES: [user2, 10] [default, 5]

For fairsharing to take effect, the group share definitions must be associated with
individual share providers (queues or host partitions) in the system. For example, if the
above share definition was associated with a host partition consisting of hostA, hostB,

82

5

and hostC, the bhpart command can display the share distribution information. By
default, the command only displays the top level share accounts associated with the
partition. Use the - r option to recursively display the entire share tree associated with
the provider.

% bhpart hpart est

HOST_PARTI TI ON_NAVE: hpart est
HOSTS: host A host B host C

SHARE | NFO FOR. hpartest:/
USER GROUP SHARES PRI ORITY STARTED RESERVED CPU TIME RUN_TI ME
go 100 5. 440 5 0 0.0 1324

% bhpart -r hpartest

HOST_PARTI TI ON_NAVE: hpart est
HOSTS: hopper

SHARE | NFO FOR hpartest/
USER GROUP SHARES PRI ORITY STARTED RESERVED CPU TIME RUN_TI ME
go 100 5.477 5 0 0.0 1324

SHARE | NFO FOR hpartest/ g0/

USER GROUP SHARES PRI ORITY STARTED RESERVED CPU TIME RUN_TI ME
g2 20 1. 645 3 0 0.0 816

gl 10 1. 099 2 0 0.0 508

SHARE | NFO FOR hpartest/ g0/ g2/

USER GROUP SHARES PRI ORI TY STARTED RESERVED CPU TIME RUN_TI ME
user3 10 3. 333 0 0 0.0 0
user 2 5 1.667 3 0 0.0 0
userl 5 1.667 0 0 0.0 0

SHARE | NFO FOR hpartest/ g0/ gl/

USER GROUP SHARES PRI ORI TY STARTED RESERVED CPU TIME RUN_TI ME
user 2 4 1.333 0 0 0.0 0

ot hers 10 1. 099 2 0 0.0 508

LSF Bafch User’s Guide 83

5 Using LSF Batch

Note that when displaying the share tree recursively, the output consists of a series of
group accounts starting from the share provider. Each group contains the account
information of any subgroups or users under that group. The ACCOUNT_PATH gives
the path name of the group account starting from name of the share provider. Each
user account similarly can be identified by a unique path e.g hpartest/g0/g1/user2.

The information associated with each account includes the static share assigned to that
group or user as well as its dynamic priority. A higher value for the priority indicates
that the user’s or group’s jobs will be considered before those with lower priority at the
same level. Priorities for accounts at different levels in the tree should not be
compared. Details about the number of started and reserved jobs together with the cpu
time and run time used by the accounts previously submitted jobs is displayed. Note
that the group account’s job counters and cpu time fields are the sum of those for all
users or subgroups underneath it.

The - Y option of bqueues will display a similar share tree for a given fairshare queue.

Queue-Level Job Starters

If you frequently need to submit batch jobs that have to be started in a particular
environment or require some type of setup to be performed before they are executed,
your system administrator can include a job starter function in the definition of a
selected queue. In a shell environment, this type of pre-execution setup is often
handled by writing the preliminary procedures into afile (referred to as a wrapper) that
itself contains a call to start the desired job.

In LSF, a queue-level job starter does the work of a wrapper. A job starter is simply a
command (or set of commands) which, when included in the queue definition, is run
immediately prior to all jobs submitted to the selected queue. The job starter performs
its setup or environment functions, then calls the submitted job itself, which can inherit
the execution environment created by the job starter. One typical use of this feature is
to customize LSF for use with Atria ClearCase environment (see ‘Support for Atria
ClearCase’ on page 2750f the LSF Batch Administrator’s Guide).

A queue-level job starter can only be specified by the LSF administrator. You can
specify a job starter for your interactive jobs using the LSF_JOB_STARTER

84

environment variable. See ‘Command-Level Job Starters’ on page 144 for detailed
information.

Queue-level job starters have no effect on interactive jobs, unless the interactive job is
submitted to a queue as an interactive batch job (see ‘Interactive Batch Job Support’ on
page 145 for information on interactive batch jobs).

Configuration Parameters

The bpar ans command reports some generic configuration parameters of the LSF
Batch system. These include the default queues, default host or host model for CPU
speed scaling, job dispatch interval, job checking interval, job accepting interval, etc.
The command can display such information in either short format or long format. The
short format summarizes a few key parameters. For example:

% bpar ans
Def ault Queues: nornal idle
Default Host Specification: DECAXP

Job Dispatch Interval: 20 seconds
Job Checking Interval: 15 seconds
Job Accepting Interval: 20 seconds

The -1 option to the bpar ans command displays the information in long format,
which gives a brief description of each parameter as well as the name of the parameter
asitappearsinthel sb. par ans file. In addition, the long format lists every parameter
defined inthel sb. par ans file. Here is an example of the output from the long format
of the bpar anms command:

% bpar anms - |

System def aul t queues for autonatic queue sel ection:
DEFAULT QUEUE = normal idle

The interval for dispatching jobs by naster batch daenon:
MBD _SLEEP TI ME = 20 (seconds)

The interval for checking jobs by slave batch daenon:

LSF Bafch User’s Guide 85

5

Using LSF Batch

The

The

The

The
ent

The

The

The

SBD SLEEP TI ME = 15 (seconds)

interval for a host to accept two batch jobs subsequently:
JOB_ACCEPT_| NTERVAL = 1 (* MBD_SLEEP_TI ME)

idle time of a host for resum ng pg suspended jobs:
PG SUSP_ I T = 180 (seconds)

amount of time during which finished jobs are kept in core:
CLEAN PERI OD = 3600 (seconds)

nmaxi mum nunber of finished jobs that are |ogged in current ev
file:
MAX_JOB_NUM = 2000

maxi mum nunber of retries for reaching a slave batch daenon:
MAX_SBD FAIL = 3

nunber of hours of resource consunption history:
H ST_HOURS = 5

default project assigned to jobs.
DEFAULT_PRQJECT = defaul t

User Controlled Account Mapping

By default, LSF assumes a uniform user name space within a cluster. Some sites do not
satisfy this assumption. For such sites, LSF provides support for the execution of batch
jobs within a cluster with a non-uniform user name space.

You can set up a hidden. | sf host s file in your home directory that tells what
accounts to use when you send jobs to remote hosts and which remote users are
allowed to run jobs under your local account. This is similar to the . r host s file used
byrcp,rl oginandrsh.

86

The . | sf host s file consists of multiple lines, where each line is of the form:
host nane| cl ust er nane usernane [send|recv]

A ‘+’ in the hostname or username field indicates any LSF host or user respectively. The
keyword send indicates that if you send a job to host hostname, then the account
username should be used. The keyword r ecv indicates that your local account is
enabled to run jobs from user username on host hostname. If neither send norr ecv are
specified, then your local account can both send jobs to and receive jobs from the
account username on hostname.

Note
The cl ust er namre argument is used for the LSF MultiCluster product. See ‘Using
LSF MultiCluster’ on page 187
Lines beginning with ‘#’ are ignored.
Note
The permission on your . | sf host s file must be set to read/write only by the owner.
Otherwise, your . | sf host s file is silently ignored.
For example, assume that hostB and hostA in your cluster do not share the same user
name/user ID space. You have an account user 1 on host hostB and an account
ruser _1 on host hostA. You want to be able to submit jobs from hostB to run on hostA.
Your . | sf host s files should be set up as follows:

On hostB:

% cat ~userl/.|sfhosts
host A ruser _1 send

On hostA:

% cat ~ruser_1/.|sfhosts
host B userl recv

As another example, assume you have account user 1 on host hostB and want to use

the | sf guest account when sending jobs to be run on host hostA. The | sf guest
account is intended to be used by any user submitting jobs from any LSF host.

LSF Bafch User’s Guide 87

5 Using LSF Batch

The . | sf host s files should be set up as follows:
On hostB:

% cat ~userl/.|sfhosts
host A | sfguest send

On hostA:

% cat ~l sfguest/.|sfhosts
+ + recv

When using account mapping, your job is always started as a login shell so that the
start-up files of the user account, under which your job will run, are sourced.

Your . | sf host s file is read at job submission time. Subsequent changes made to this
file will not affect the account used to run the job. Jobs submitted after the changes are
made will pick up the new entries.

If you attempt to map to an account for which you have no permission, your job is put
into PSUSP state. You can modify the . | sf host s file of the execution account to give
appropriate permission and resume the job.

Note
The bpeek command will not work on a job running under a different user account.

File transfer using the - f option to the bsub command will not work when running
under a different user account unless r cp(1) is set up to do the file copying.

88

6. Submitting Batch Jobs

This chapter describes how to use the bsub command. Command options are divided
into groups with related functions. Topics covered in this chapter are:

= input to and output from batch jobs

= specifying resource requirements

= restricting the hosts eligible to run a job

= controlling resource usage

= using pre-execution commands to determine when a job can start
= specifying dependencies between batch jobs

= moving files to and from the execution host

= specifying ‘start after’ and ‘finish before’ times
= submitting parallel jobs

= other LSF Batch options

« job scripts

The options to the bsub command related to job checkpointing and migration are
described in ‘Checkpointing and Migration’ on page 165.

LSF Bafch User’s Guide 89

6 Submitting Batch Jobs

Input and Output

When a batch job completes or exits, LSF Batch by default sends you a job report by
electronic mail. The report includes the standard output (st dout) and error output
(st der r) of the job. The output from stdout and stderr are merged together in the
order printed, as if the job was run interactively. The default standard input (st di n)
file is the null device.

UNIX The null device is/ dev/ nul | .

If you want mail sent to another user, use the - u username option to the bsub
command. Mail associated with the job will be sent to the named user instead of to you.

If you do not want output to be sent by mail, you can specify st dout and st der r files.
You can also specify the standard input file if the job needs to read input from st di n.
For example:

% bsub -q night -i job_in -0 job_out -e job_err nyjob

submits nmyj ob to the night queue. The job reads its input from file j ob_i n. Standard
output is stored in file j ob_out , and standard error is stored in file j ob_err . If you
specify a - o outfile argument and do not specify a - e errfile argument, the standard
output and error are merged and stored in outfile.

The output file created by the - o option to the bsub command normally contains job
report information as well as the job output. This information includes the submitting
user and host, the execution host, the CPU time (user plus system time) used by the job,
and the exit status. If you want to separate the job report information from the job
output, use the - Noption to specify that the job report information should be sent by
email.

The output files specified by the - 0 and - e options are created on the execution host.
See ‘Remote File Access’ on page 101 for an example of copying the output file back to the
submission host if the job executes on a file system that is not shared between the
submission and execution hosts.

90

Resource Requirements

If you need to explicitly specify resource requirements for your job, use the - Roption
to the bsub command. For example:

% bsub -R "swp > 15 && hpux order[cpu]" nyjob

runs nyj ob on an HP-UX host that is lightly loaded (CPU utilization) and has at least
15 megabytes of swap memory available. See ‘Resource Requirement Strings’ on page 46
for a complete discussion of resource requirements.

You do not have to specify resource requirements every time you submit a job. The LSF
administrator may have already configured the resource requirements for your jobs,
or you can put your executable name together with its resource requirements into your
personal remote task list. The bsub command automatically uses the resource
requirements of the job from the remote task lists. See ‘Managing Your Task List’ on
page 53 for more information about displaying task lists and putting tasks into your
remote task list.

Resource Reservation

When a job is dispatched, the system assumes that the resources that the job consumes
will be reflected in the load information. However, many jobs often do not consume
the resources they require when they first start. Instead, they will typically use the
resources over a period of time. For example, a job requiring 100MB of swap space is
dispatched to a host having 150MB of available swap space. The job starts off initially
allocating 5MB, gradually increasing the amount consumed to 100MB over a 30-
minute period. During this period, another job requiring more than 50MB of swap
space should not be started on the same host to avoid overcommitting the resource.

When submitting a job, you can specify the amount of resources to be reserved through
the resource usage section of resource requirement string argument to the bsub

LSF Batfch User’s Guide 91

6 Submitting Batch Jobs

command. The syntax of the resource reservation in the r usage section of resource
requirement string is:

res=val ue[:res=val ue]...[:res=val ue][: duration=val ue][: decay=val u
e]

The res parameter can be any load index. The value parameter is the initial reserved
amount. If res or value is not given, the default is to not reserve that resource.

The duration parameter is the time period within which the specified resources should
be reserved. It is specified in minutes by default. If the value is followed by the letter
h’, itis specified in hours. For example, 'dur at i on=30"and 'dur at i on=2h’specify a
duration of 30 minutes and two hours respectively. If duration is not specified, the
default is to reserve the total amount for the lifetime of the job.

The decay parameter indicates how the reserved amount should decrease over the
duration. A value of 1, 'decay=1’, indicates that system should linearly decrease the
amount reserved over the duration. The default decay value is 0, which causes the total
amount to be reserved for the entire duration. Values other than 0 or 1 are unsupported.
If duration is not specified decay is ignored.

When deciding whether to schedule a job on a host, the LSF Batch system considers the
reserved resources of jobs that have previously started on that host. For each load
index, the amount reserved by all jobs on that host is summed up and subtracted (or
added if the index is increasing) from the current value of the resources as reported by
the LIM to get amount available for scheduling new jobs:

avail abl e ambunt = current value - reserved anount for all jobs
For example:

% bsub -R "rusage[t nmp=30: dur ati on=30: decay=1] " nyj ob

will reserve 30MB of / t np space for the job. As the job runs, the amount reserved will
decrease at approximately 1 megabyte/minute such that the reserved amount is 0 after

30 minutes.

The queue level resource requirement parameter RES REQmay also specify the
resource reservation. If a queue reserves certain amount of a resource, you cannot use

92

6

the - Roption of the bsub command to reserve a greater amount of that resource. For
example, if the output of bqueues -1 command contains:

RES REQ rusage[men¥40: swp=80: t np=100]

the following submission will be rejected since the requested amount of certain
resource(s) exceeds queue’s specification:

% bsub -R "rusage[mrene50: swp=100] " nyj ob

The amount of resources reserved on each host can be viewed through the - | option
of the bhost s command.

Host Selection

If you want to restrict the set of candidate hosts for running your batch job, use the - m
option to bsub.

% bsub -q idle -m"host A host D host B" nyj ob

This command submits nyj ob to the idle queue and tells LSF Batch to choose one host
from hostA, hostD and hostB to run the job. All other LSF Batch scheduling conditions
still apply, so the selected host must be eligible to run the job.

If you have applications that need specific resources, it is more flexible to create a new
Boolean resource and configure that resource for the appropriate hosts in the LSF
cluster. This must be done by the LSF administrator. If you specify a host list using the
- moption to bsub, you must change the host list every time you add a new host that
supports the desired resources. By using a Boolean resource, the LSF administrator can
add, move or remove resources without forcing users to learn about changes to
resource configuration.

LSF Bafch User’s Guide 93

6 Submitting Batch Jobs

Host Preference

When several hosts can satisfy the resource requirements of a job, the hosts are ordered
by load. However, in certain situations it may be desirable to override this behaviour
to give preference to specific hosts, even if they are more heavily loaded.

For example, you may have licensed software which runs on different groups of hosts,
but prefer to run on a particular host group because the jobs will finish faster, thereby
freeing the software license to be used by other jobs.

Another situation arises in clusters consisting of dedicated batch servers and desktop
machines which can also run jobs when no user is logged in. You may prefer to run on
the batch servers and only use the desktop machines if no server is available.

The - moption of the bsub command allows you to specify preference by using '+’ after
the hostname. The special hostname, ot her s, can be used to refer to all the hosts that
are not explicitly listed. For example:

% bsub -R "solaris & nenm> 10" -m "host D+ ot hers" nyjob

will select all sol ari s hosts having more than 10 megabytes of memory available. If
host 'host D satisfies this criteria, it will be picked over any other host which otherwise
meets the same criteria. If host D does not satisfy the criteria, the least loaded host
among the others will be selected. All the other hosts are considered as a group and are
ordered by load.

You can specify different levels of preference by specifying a number after the '+. The
larger the number, the higher the preference for that host or host group. For example:

% bsub -m "groupA+2 groupB+1 groupC' nyjob

gives first preference to hosts in gr oupA, second preference to hosts in gr oupB and
last preference to those in gr oupC. The ordering within a group is still determined by
the load. You can use the bngr oup command to display the host groups configured in
the system.

Note

A queue may also define the host preference for jobs via HOSTS parameter. The queue
specification is ignored if a job specifies its own preference.

94

You can also exclude a host by specifying a resource requirement using hnane
resource:

% bsub -R “hname!=hostb && type==sgi6” myjob

Resource Limits

Resource limits are constraints you or your LSF administrator can specify to limit the
use of resources. Jobs that consume more than the specified amount of a resource are

signalled or have their priority lowered.

Resource limits can be specified either at the queue level by your LSF administrator or
at the job level when you submit a job. Resource limits specified at the queue level are

hard limits while those specified with job submission are soft limits. See
setrlimt(2) man page for concepts of hard and soft limits.

The following resource limits can be specified to the bsub command:

-c cpu_limit[/host_spec]

Set the soft CPU time limitto cpu_I i m t for this batch job. The default is no
limit. This option is useful for preventing erroneous jobs from running away,

or to avoid using up too many resources. A SI GXCPU ssignal is sent to all

processes belonging to the job when it has accumulated the specified amount
of CPU time. If the job has no signal handler for SI GXCPU, this causes it to be
killed. LSF Batch keeps track of the CPU time used by all processes of the job.

cpu_l i mt isinthe form[hour:] m nut e, where ni nut e can be greater
than 59. So, 3.5 hours can either be specified as 3:30 or 210. The CPU limit is
scaled by the host CPU factors of the submitting and execution hosts. This is
done so that the job does approximately the same amount of processing for a

given CPU limit, even if it is sent to a host with a faster or slower CPU. For

example, if a job is submitted from a host with a CPU factor of 2 and executed

on a host with a CPU factor of 3, the CPU time limit is multiplied by 2/3

because the execution host can do the same amount of work as the submission

host in 2/3 of the time.

LSF Batfch User’s Guide

95

6 Submitting Batch Jobs

The optional host _spec specifies a host name or a CPU model name defined
by LSF. The | si nf o command displays CPU model information. If

host _spec is not given, the CPU limit is scaled based on the
DEFAULT_HOST_SPECshown by the bpar ans -1 command. (If
DEFAULT_HOST_SPEC is not defined, the fastest batch host in the cluster is
used as the default.) If host _spec is given, the appropriate CPU scaling
factor for the specified host or CPU model is used to adjust the actual CPU time
limit at the execution host. The following example specifies that nyj ob can
run for 10 minutes on a DEC3000 host, or the corresponding time on any other
host:

% bsub -c¢ 10/ DEC3000 nyj ob

-Wrun_limt[/host_spec]
Set the wall-clock run time limit of this batch job. The default is no limit. If the
accumulated time the job has spent in the RUN state exceeds this limit, the job
is sent a USR2 signal. If the job does not terminate within 10 minutes after
being sent this signal, itis killed.run_I i m t and host _spec have the same
format as the argument to the bsub - c option.

-F file_limt
Set a per-process (soft) file size limit for each process that belongs to this batch
job. If a process of this job attempts to write to a file such that the file size
would increase beyond fil e _|i m t kilobytes, the kernel sends that process
a Sl GXFSZ signal. This condition normally terminates the process, but may be
caught. The default is no soft limit.

-Ddata_limt
Set a per-process (soft) data segment size limit for each process that belongs to
this batch job. An sbr k() ornmal | oc() call to extend the data segment
beyond dat a_I| i m t Kilobytes returns an error. The default is no soft limit.

-S stack limt
Set a per-process (soft) stack segment size limit for each process that belongs
to this batch job. Ansbr k() call to extend the stack segment beyond
stack_|imt Kkilobytes causes the process to be terminated. The default is no
soft limit.

-Ccore limt

Set a per-process (soft) core file size limit for each process that belongs to this
batch job. On some systems, no core file is produced if the image for the

96

6

process is larger than cor e_| i m t kilobytes. On other systems only the first
core_limt kilobytes of the image are dumped. The default is no soft limit.

-Mmemlimt
Set the per-process (soft) process resident set size limitto mem | i mi t
kilobytes for all processes that belong to this batch job. Exceeding this limit
when free physical memory is in short supply results in a low scheduling
priority being assigned to the process. That is, the process is reniced. The
default is no soft limit. On HP-UX and Sun Solaris 2.x, a resident set size limit
cannot be set, so this option has no effect.

Pre-Execution Commands

Some batch jobs require resources that LSF does not directly support. For example, a
batch job may need to reserve a tape drive or check for the availability of a software
license.

The - E pre_exec_conmmand option to the bsub command specifies an arbitrary
command to run before starting the batch job. When LSF Batch finds a suitable host on
which to run a job, the pre-execution command is executed on that host. If the pre-
execution command runs successfully, the batch job is started.

An alternative to using the - E pre_exec_conmand option is for the LSF
administrator to set up a queue level pre-execution command. See ‘Queue-Level Pre-/
Post-Execution Commands’ on page 224 of the LSF Batch Administrator’s Guide for more
information.

By default, the pre-execution command is run under the same user ID, environment,
and home and working directories as the batch job. For queue-level pre-execution
commands, you can specify a different user ID by defining the

LSB PRE POST_EXEC USER variable. If the pre-execution command is not in your
normal execution path, the full path name of the command must be specified.

For parallel batch jobs, the pre-execution command is run on the first selected host.

The pre-execution command returns information to LSF Batch using the exit status. If
the pre-execution command exits with non-zero status, the batch job is not dispatched.

LSF Batfch User’s Guide 97

6 Submitting Batch Jobs

The job goes back to the PEND state, and LSF Batch tries to dispatch another job to that
host. The next time LSF Batch tries to dispatch jobs this process is repeated.

LSF Batch assumes that the pre-execution command runs without side effects. For
example, if the pre-execution command reserves a software license or other resource,
you must take care not to reserve the same resource more than once for the same batch
job.

The following example shows a batch job that requires a tape drive. The t apeCheck
program is a site specific program that exits with status zero if the specified tape drive
is ready, and one otherwise:

% bsub -E "/usr/local/bin/tapeCheck /dev/rnt0Ol" nyjob

Job Dependencies

Some batch jobs depend on the results of other jobs. For example, a series of jobs could
process input data, run a simulation, generate images based on the simulation output,
and finally, record the images on a high-resolution film output device. Each step can

only be performed when the previous step completes and all subsequent steps must be
aborted if any step fails.

The - w depend_cond option to the bsub command specifies a dependency condition,
which is a logical expression based on the execution states of preceding batch jobs.
When the depend_cond expression evaluates to TRUE, the batch job can be started.
Complex conditions can be written using the logical operators ‘&& (AND), ‘| | * (OR),
‘1" (NOT) and parentheses ‘() .

If any one of the depended batch jobs is not found, bsub fails and the job is not
submitted.

Inter-job dependency scheduling can be based on specific job exit status, so that a
suitable recovery job can be initiated in case of specific types of job failures. The exit
condition in the dependency string (specified in the - woption of bsub) can be
triggered on particular exit code(s) of the dependant job. Relational operators can be
used when a job needs to be triggered on a range of exit codes.

98

6

If there is a space character, a logic operator or parentheses in the expression string, the
string must be enclosed in single or double quotes (' or ") to prevent the shell from
interpreting the special characters.

Batch jobs are identified by job ID number or job name. The job ID number is displayed
by the bsub command when the job is submitted. The job name is a string specified by
the - J job_name option.

In job dependency expressions, numeric job names must be enclosed in quotes.

UNIX Note that a numeric job name should be doubly quoted, e.g. - w
"210™ , since the UNIX shell treats -w "210" the same as -w
210.

Job names refer to jobs submitted by the same user. If more than one of your jobs has
the same name, the condition is tested on the last job submitted with that name.

A wildcard character “*’ can be specified at the end of a job name to indicate all jobs
matching the name. For example, j obA* will match j obA, j obAl, j obA test,
j obA. | og etc. There must be at least one match.

The conditions that can be tested are:

started({jobl D | jobNane})
If the specified batch job has started running or has run to completion, the
condition is TRUE; that is, the job is not in the PEND or PSUSP state, and also
is not currently running the pre-execution command if the bsub - E option
was specified.

done({jobl D | jobNane})
If the specified batch job has completed successfully and is in the DONE state,
the condition is TRUE. Otherwise, it is FALSE.

exit({joblD | jobNane})
If the specified batch job has terminated abnormally and is in the EXIT state,
the condition is TRUE. Otherwise, it is FALSE.

exit({joblD | jobNane}, [op] code)

If the specified job has terminated with the exit code specified by code, or with
an exit code satisfying the relationship expressed by op code, the condition is

LSF Bafch User’s Guide 99

6 Submitting Batch Jobs

TRUE. Otherwise, it is FALSE. When a batch job is killed while pending, it is
assigned a special exit code of 512.

The op variable may be any of the relational operators ‘>’, ‘>=’", ‘<, ‘<=’ ‘==’
‘I=", The code variable is numeric, representing a job exit code.

ended({jobl D | jobNane})
If the specified batch job has finished (either in the EXIT or DONE state), the
condition is TRUE. Otherwise, it is FALSE.

{jobl D | jobNane}
Specifying only j obl Dor j obNane is equivalent to done({j obl D |
j obNane}) . If the specified batch job has completed successfully and is in the
DONE state, the condition is TRUE. Otherwise, it is FALSE.

Job Dependency Examples

done(312) && (started(Job2)||exit(Job3))

The submitted job will not start until job 312 has completed successfully, and either the
job named Job2 has started or the job named Job3 has terminated abnormally.

1532 || jobName2 || ended(j obNane3*)

The submitted job will not start until either job 1532 has completed, the job named

j obNanme2 has completed, or all jobs with names beginning with j obNane3 have
finished.

exit (34334, 12)

The submitted job will not start until job 34334 finishes with an exit code of 12.

exit (nyjob, < 30)

The submitted job will not start until myjob finishes with an exit code lower than 30.
Note

If you require more extensive dependencies, for example, calendar or event
dependencies, you may want to examine the LSF JobScheduler product of LSF Suite.

100

Remote File Access

LSF is usually used in networks with shared file space. When shared file space is not
available, LSF can copy needed files to the execution host before running the job, and
copy result files back to the submission host after the job completes.

The-f "[Ifile op [rfile]]" optiontothebsubcommand copiesafile between
the submission host and the execution host. | fi | e is the file name on the submission
host, and r f i | e is the name on the execution host. op is the operation to perform on
thefile.1 fil eandrfil e can be absolute or relative file path names. If one of the files
is not specified, it defaults to the other, which must be given.

The - f option may be repeated to specify multiple files.

op must be surrounded by white space. The possible values for op are:

>
| fil eonthesubmissionhostiscopiedtorfil e ontheexecution host before
job execution. r f i | e is overwritten if it exists

<
rfil e on theexecution hostis copiedtol fi | e on the submission host after
the job completes. | fi | e is overwritten if it exists

<<
rfileisappendedtol fil e after the job completes. | fi | e is created if it
does not exist

><, <>

equivalent to performing the > and then the < operation. | fi | e is copied to
rfil e before the job executes, and rfi | e is copied back (replacing the
previous | fi | e) after the job completes. ‘<>’ is the same as ‘><*

You must include | fi | e with op, otherwise it will result in a syntax error. When
rfil eisnotgiven,itisassumed to be thesameas!|file.

If the input file specified with the - i argument to bsub is not found on the execution

host, the file is copied from the submission host using LSF’s remote file access facility
and is removed from the execution host after the job finishes.

LSF Batfch User’s Guide 101

6 Submitting Batch Jobs

The output files specified with the - 0 and - e arguments to bsub are created on the
execution host, and are not copied back to the submission host by default. You can use
the remote file access facility to copy these files back to the submission host if they are
not on a shared file system. For example, the following command stores the job output
in the j ob_out file and copies the file back to the submission host:

% bsub -0 job_out -f “job_out <" myjob

If the submission and execution hosts have different directory structures, you must
ensure that the directory where rfile and Ifile will be placed exists. LSF tries to change
the directory to the same path name as the directory where the bsub command was
run. If this directory does not exist, the job is run in your home directory on the
execution host.

You should specify rfile as a file name with no path when running in non-shared file
systems; this places the file in the job’s current working directory on the execution host.
This way the job will work correctly even if the directory where the bsub command is
run does not exist on the execution host. Be careful not to overwrite an existing file in
your home directory.

For example, to submit myj ob to LSF Batch, with input taken from the file / dat a/
dat a3 and the output copied back to / dat a/ out 3, run the command:

%bsub -f "/data/data3 > data3" -f "/data/out3 < out3" nyjob data3 out3

To run the job bat ch_updat e, which updates the batch_data file in place, you need
to copy the file to the execution host before the job runs and copy it back after the job
completes:

% bsub -f "batch_data <>" batch_update batch_data

LSF Batch uses the | srcp(1) command to transfer files. | sr cp contacts the RES on
the remote host to perform the file transfer. If the RES is not available, r cp('1) is used.
Because LSF client hosts do not run the RES daemon, jobs that are submitted from
client hosts should only specify the - f option to bsub if r cp is allowed. You must set
up the permissions for r cp if account mapping is used.

102

Start and Termination Time

If you do not want LSF Batch to start your job immediately, use the bsub - b option to
specify the time after which the job should be dispatched.

% bsub -b 5:00 nyjob

The submitted job remains pending until after the local time on the LSF master host
reaches 5 A.M. You can also specify a time after which the job should be terminated
with the - t option to bsub. The command

% bsub -b 11:12:5:40 -t 11:12:20: 30 nyj ob

submits nmyj ob to the default queue to start after November 12 at 05:40 A.M. If the job
is still running on Nov 12 at 8:30 P.M., it is killed.

Parallel Jobs

LSF Batch can allocate more than one host or processor to run a job and automatically
keeps track of the job status, while a parallel job is running. To submit a parallel job,
use the - n option of bsub:

% bsub -n 10 nyj ob

This command submits myj ob as a parallel job. The job is started when 10 job slots are
available.

For parallel jobs, LSF Batch only starts one controlling process for the batch job. This
process is started on the first host in the list of selected hosts. The controlling process
is responsible for starting the actual parallel components on all the hosts selected by
LSF Batch.

LSF Batch sets a number of environment variables for each batch job. The variable
LSB_JOBI Dis set to the LSF Batch job ID number as printed by bsub. The LSB_HOSTS
variable is set to the names of the hosts running the batch job. For a sequential job,
LSB_HOSTS is set to a single host name. For a parallel batch job, LSB_HOSTS contains

LSF Batfch User’s Guide 103

6 Submitting Batch Jobs

the complete list of hosts that LSF Batch has allocated to that job. Parallel batch jobs
must get the list of hosts from the LSB_HOSTS variable and start up all of the job
components on the allocated hosts.

Inthe myj ob example above, LSF Batch starts nyj ob on the first host. myj ob reads the
LSB_HOSTS environment variable to get the list of hosts and uses the RES to execute
subtasks on those hosts.

LSF includes scripts for running PVM, P4, and MPI parallel programs as batch jobs. See
‘Parallel Jobs’ on page 181 and the pvnj ob(1), p4j ob(1), and npi j ob(1) manual pages
for more information.

The following features support parallel jobs running through the LSF Batch system.
Minimum and Maximum Number of Processors

When submitting a parallel job that requires multiple processors, you can specify the
minimum number and maximum number of the processors using - n option to the
bsub command. The syntax of the - n option is:

bsub -n mn_proc[, max_proc] <other bsub options>

If max_proc is not specified then it is assumed to be equal to min_proc. For example:
% bsub -n 4,16 nyjob

At most, 16 processors can be allocated to this job. If there are less than 16 processors
eligible to run the job, this job can still be started as long as the number of eligible
processors is greater than 4. Once the job gets started, no more processors will be

allocated to it even though more may be available later on.

If the specified maximum number is greater than the value of PROCLI M T defined for
the queue to which the job is submitted, the job will be rejected.

Specifying Locality

Sometimes you need to control how the selected processors for a parallel job are
distributed across the hosts in the cluster. You are able to specify "select all the

104

6

processors for this parallel batch job on the same host", or "do not chose more than n
processor on one host" by using the 'span’section in the - Roption string. For example:

% bsub -n 4 -R "span[hosts=1]" ny_job

This job should be dispatched to a multiprocessor that has at least 4 processors
currently eligible to run the 4 components of this job.

% bsub -n 4 -R "span[ptile=1]" nyjob

This job should be dispatched to 4 hosts even though some of the 4 hosts may have
more than one processor currently available.

Note
The queue may also define the locality for parallel jobs using RES REQparameter. The
queue specification is ignored if your job specifies its own locality.

A parallel job may span multiple hosts, with a specifiable number of processes
allocated to each host. Thus, a job may be scheduled onto a single multiprocessor host
to take advantage of its efficient shared memory, or spread out onto multiple hosts to
take advantage of their aggregate memory and swap space. Flexible spanning may also
be used to achieve parallel 1/0.

The span section of the resource requirement string can specify a processor tiling
factor, ptile:

span[ptil e=val ue]

The val ue is a number greater than 0 indicating that up to <val ue> processor(s) on
each host should be allocated to the job regardless of how many processors the host
possesses. For example:

% bsub -n 4 -R "span[ptile=2]" nyjob

This job should be dispatched to 2 hosts with 2 processors on each host allocated for
the job. Each host may have more than 2 processors available.

% bsub -n 4 -R "span[ptile=3]" nyjob

LSF Bafch User’s Guide 105

6 Submitting Batch Jobs

In this case, the job must be dispatched to 2 hosts. It takes 3 processors on the first host
and 1 processor on the second host.

Job Arrays

The LSF Batch system provides a structure called a job array, which allows multiple
jobs to be created with a single job submission (bsub). A job array is a series of
independent batch jobs, all of which share the same job ID and submission parameters
(resource requirements). The job array elements are referenced using an array index.
The dimension and structure of the job array are defined as part of the job name when
the job is submitted.

Job array elements (jobs) are scheduled to run independently of each other, using the
various policies that govern a user’s jobs within the LSF system. After a job array is
submitted, the resource requirements for individual jobs and for the entire array are
modified using the bnbod command (see ‘Job Array Modification’ on page 133). Individual
jobs and the entire array are controlled using the bst op, br esune, and bki | |
commands (see ‘Controlling Job Arrays’ on page 129). The status and history of a job
array and its jobs are viewed using the bj obs and bhi st commands (see ‘Tracking Job
Arrays’ on page 126).

The default maximum size of a job array is 1000 jobs, but this can be increased to 2046
jobs. The MAX_JOB_ARRAY_SI ZE parameter specified inthe | sb. par ans file sets the
maximum size of a job array.

This section discusses the following topics:

- Creating a Job Array
- Array Job Dependencies
- Handling Input/Output/Error Files for Job Arrays

Additional topics about job arrays:

= ‘Tracking Job Arrays’ on page 126
e ‘Controlling Job Arrays’ on page 129

106

= ‘Job Array Modification’ on page 133
Creating a Job Array

A job array is created at the time of submission. The job name field of the bsub
command is extended to specify the elements of the array. Each element of the array
corresponds to a single job and is identified by an index which must be a positive
integer.

The index values in an array do not have to be consecutive, and a combination of
individual index values and index ranges are used to define a job array. The following
command creates a job array with the name myJobArray consisting of 100 elements
with indices 1 through 100.

% bsub -J "myJobArray[1, 2, 3, 4-50, 51, 52, 53-100]"

The array elements (jobs) are named mylJobArray[1], myJobArray|[2], ...,
myJobArray[n], ..., myJobArray[100].

Syntax

% bsub -J "jobArrayNane[indexList, . . .]" conmmand

Note
One blank space must be entered between the - J switch and the first quote in the job
array specification
The job array specification must be enclosed in double quotes

The square brackets,[], aroundthei ndexLi st must be entered exactly as shown.

Note: The job array syntax breaks the convention of using square brackets to indicate
optional items.

j ObAr r ayNane
Specifies a user defined string used to name the job array. Any combination of
the following characters make up a valid j obAr r ayNarre:

a-z | AZ| 0-9] . | - |

LSF Bafch User’s Guide 107

6

Submitting Batch Jobs

i ndexLi st
Specifies the dimension, structure, and indices of the job array in the following
format:
i ndexList = start [- end [: step]]
start
A unique positive integer specifying the start of a range of job array indices. If
a start value is specified without an end value, start specifies an individual
index in the job array.
end
A unique positive integer specifying the end of a range of job array indices.
step

A positive integer specifying the value to increment the index values for the
preceding range. If omitted, the default value is 1.

Examples of indexList specifications

108

[1] specifies 1 job with the index of 1. Since no end value is specified, the start value
is the index.

[1, 2, 3, 4, 5] specifies 5 jobs with indices 1 through 5.

[1-10] specifies 10 jobs with indices 1 through 10. Since no step value is specified,
the default step is 1. The index values are determined by starting at 1 and adding
1, the default step value, to the current index. The index values are not
incremented past the end value.

[10-20:2] specifies 6 jobs with indices 10, 12, 14, 16, 18, and 20. The step value is 2.
Index values are determined by starting at 10 and adding 2 to the current index.
The index values are not incremented past the end value.

[1,2,3,4,5,6-10, 27, 100-200:50, 201, 202] specifies 16 jobs with indices of 1-10, 27,
100, 150, 200, 201, and 202.

LSB_JOBINDEX Environment Variable

The environment variable LSB_JOBI NDEX is set when each job array element is
dispatched. Its value corresponds to the job array index. Typically this variable is used
within a script to select the job command to be performed based on the job array index.
For example:

if [$LSB_JOBI NDEX -eq 1]; then
cndl

fi

if [$LSB_JOBI NDEX -eq 2]; then
cnd2

fi

Array Job Dependencies

Since each job array has the same set of submission parameters, it is not possible to set
up job dependencies between elements of the same array. Similar behaviour can be
achieved by creating two job arrays and using array job dependencies. For example,
suppose you want to have an array with 100 elements, where the first 50 elements must
be run before next 50. This can be achieved with the following submissions:

% bsub -J "nyJob[1-50]" cnd
Job <101> subnitted to default queue <nornal >.

% bsub -w "done(101)" -J "nyJob[51-100]" cnd
Job <102> subnitted to queue <nornal >.

The second job array, 102, will wait for the successful completion of all jobs in the array
due the done(101) dependency. Note that two job arrays can have the same name,
but have a different number of elements in each. Each job array is handled
independently of the other.

A job or job array can also depend on the partial completion of another array. One of

the dependency condition functions listed in the Table can be used to evaluate the
number of jobs of ajob array in a given job state. The “op” in Table 6 is one of the strings

LSF Bafch User’s Guide 109

6 Submitting Batch Jobs

== St S or "<=", “num” is a non-negative integer. A special string "*" can be
used in place of “num” to mean "all"..

Table 6. Dependency Condition Functions

Function Description
nunrun(array_jobld, op TRUE i f RUN counter satisfies test
numn

nunpend(array_jobld, op TRUE if PEND counter satisfies test
num

nundone(array_j obld, op TRUE if DONE counter satisfies test
num

nurexit (array_jobld, op TRUE if EXIT counter satisfies test
num

nunended(array _jobld, op | TRUE if DONE+EXI T counter satisfies
num t est

nunhol d(array_jobld, op TRUE i f PSUSP counter satisfies test
num

nunstart(array_jobld, op | TRUE i f RUN+SSUSP+USUSP counters
num satisfies test

In the following example, the elements in job array 202 will be scheduled when 10 or
more elements in job array 201 have completed successfully.

% bsub -J "nyJob[1-50]" cnd
Job <201> subnmitted to default queue <normnmal >.

% bsub -w "nundone(201, >=10)" -J "nyJob[51-100]" cmd
Job <202> subnmitted to default queue <nornal >.

Handling Input/Output/Error Files for Job Arrays

If input, output, or error files are specified for the array, then all elements will share
these files. In order to separate the 1/0 of each element, special strings can be inserted
in the 170 file specification to indicate the job ID or the array index of the element. The

110

6

string "%J" and "%I" are expanded at job execution time into the job ID and array index
(respectively), when found in the input, output or error specification. Both "%l" and
"%J" may be specified simultaneously. For example:

% bsub -J "render[1-5]" -i "franme.%" renderit
Job <200> subnitted to default queue <nornal >.

would result in an array with 5 elements: render [1], . . render [5], whose input
files are "frame.1", "frame.2", ...,"frame.5", respectively.

Specifying a Share Account

If the cluster uses fairshare to determine the rate of resource allocation, then the order
in which jobs are dispatched will be different from the default first-come-first-served
(FCFS) policy. A user cannot control the priority assigned by the system when
fairshare is enabled. However, if a user belongs to more than one group in the share
tree and hence has multiple share accounts, then the job can be associated with a
particular share account. This can be done by using the - Goption of bsub(1) . For
example, if a user is member of both the 'test’ and 'development’ groups, a job can be
submitted which uses the users share account in the test group by:

% bsub -G test nyJob

Note that the user must have an account under the group specified, otherwise the job
is rejected. Use bugr oup - to find out if you belong to a group.

UNIX Re-initializing Job Environment on the
Execution Host

By default LSF Batch copies the environment of the job from the submission
host when the job is submitted. The environment is recreated on the
execution host when the job is started. This is convenient, in many cases,
because the job runs as if it were run interactively on the submission host.

LSF Batfch User’s Guide 111

6 Submitting Batch Jobs

There are cases where you want to use a platform specific or host specific
environment to run the job, rather than using the same environment as on
the submission host. For example, you may want to set up different search
paths on the execution host.

The - L shell option to the bsub command causes LSF Batch to emulate a
login on the execution host before starting your job. This makes sure that
the login start up files (. prof i | e for/ bi n/ sh,or.cshrcand. | ogin
for / bi n/ csh) are sourced before the job is started. The shell argument
specifies the login shell to use.

% bsub -L /al/b/shell nyjob
Job <1234> is submtted to default queue <nornal >,

This tells LSF Batch to use/ a/ b/ shel | as the login shell to reinitialize the
environment.

Note

This does not affect the shell under which the job is run. When a login shell
is specified with the - L shel I option to the bsub command, that shell
is only used as a login shell to set the environment. The job is run using
/ bi n/ sh, unless you specify otherwise as described in ‘Running a Job

Under a Particular Shell’ on page 116. For example, if your job script is
written in/ bi n/ sh and your regular login shell is/ bi n/ csh, you can
run your job under / bi n/ sh but use / bi n/ csh to reinitialize the job
environment by sourcing your . cshr c and . | ogi n files.

Other bsub Options

This section lists some other bsub options. For details on these options see the
bsub(1) manual page.

- X

112

The job must run exclusively on a host. The job is started on a host that has no
other LSF Batch jobs running on it. The host is locked (status | ockU) while this
job is running so that no other LSF jobs are sent to the host.

Specify that the job is rerunnable. See ‘Automatically Rerunning and Restarting
Jobs’ on page 174.

Send email to the job submitter when the job begins executing.

The job is submitted so that it is hot scheduled until it is explicitly released by
the user or administrator. The job immediately goes into the PSUSP state
instead of the PEND state. A br esune(1) command would cause the job to
go into the PEND state, where it could be scheduled.

This feature is useful when a job must wait on a condition which cannot be
detected through LSF. The user or administrator can manually resume the job
when the condition is satisfied, allowing it to be scheduled.

An interactive batch job is submitted to the LSF Batch system. See ‘Interactive
Batch Job Support’ on page 145 for more details.

-k "checkdir[interval]"
Specify the checkpoint directory and interval. See ‘Submitting Checkpointable
Jobs’ on page 169.

-P project
Associate a project name with a job. Project names are logged inthe | sh. acct
file. You can use the bacct command to gather accounting information on a
per-project basis.

On systems running IRIX 6, before the submitted job begins execution, a new
array session is created and the project Id corresponding to the project name is
assigned to the session.

Force the synchronous execution of a job: the bsub command will not return
until the specified job finishes running.

This is useful in cases where the completion of the job is required in order to

proceed, such as a job script. If the job needs to be rerun due to transient
failures, the command will return after the job finishes successfully.

LSF Bafch User’s Guide 113

6 Submitting Batch Jobs

For example:

%

./ bsub -K nmyJob

Job <205> is submtted to default queue < nornal >,
<< Waiting for dispatch ...>>

This will cause the bsub command to wait until the job is completed before
returning. bsub will exit with the same exit code as the application, so that job
submission scripts can take appropriate actions based on any failure
conditions.

Job Scripts

You canbuild ajob file one line at a time, or create it from another file, by running bsub
without a command to submit. When you do this, you start an interactive session
where bsub reads command lines from the standard input and submits them as a
single batch job. You are prompted with bsub> for each line.

Examples

UNIX

114

% bsub -q simnulation

bsub> cd /wor k/ dat a/ nyhonedi r

bsub> nyjob argl arg2

bsub> rm nyj ob. | og

bsub> ~D

Job <1234> submitted to queue <sinulation>.

In this case, the three command lines are submitted to LSF Batch and run
as a Bourne shell (/ bi n/ sh) script. Note that only valid Bourne shell
command lines are acceptable in this case. Here is another example:

% bsub -q sinmulation < command file
Job <1234> submitted to queue <sinulation>.

NT

command_fi | e must contain Bourne shell command lines.

C\> bsub -q simulation

bsub> cd \\server\data\ nyhonedir

bsub> nyjob argl arg2

bsub> del nyjob. | og

bsub> ~Z

Job <1234> submitted to queue <sinulation>.

In this case, the three command lines are submitted to LSF Batch and run
as a batch file (BAT). Note that only valid Windows batch file command
lines are acceptable in this case. Here is another example:

% bsub -q sinmulation < command file
Job <1234> submitted to queue <sinulation>.

command_fi | e must contain Windows batch file command lines.

Embedded Submission Options

You can specify job submission options in the script read from the standard input by
the bsub command using lines starting with ‘#BSUB’:

% bsub -q simnulation

#BSUB - test

#BSUB -0 outfile -R "menrl10"
nyjob argl arg2

#BSUB -J sinjob

bsub>
bsub>
bsub>
bsub>
bsub>

"D

Job <1234> submitted to queue <sinul ation>.

There are a few things to note:

< Command line options override embedded options, therefore the job is submitted
to the simulation queue rather than the test queue

= Submission options can be specified anywhere in the standard input. In the above
example, the - J option to bsub is specified after the command to be run

= More than one option can be specified on one line, as shown in the above example

LSF Bafch User’s Guide 115

6 Submitting Batch Jobs

As a second example, you can redirect a script to the standard input of the bsub
command:

% bsub < nyscri pt
Job <1234> subnmitted to queue <test>.

The nyscri pt file contains job submission options as well as command lines to
execute. When the bsub command reads a script from its standard input, the script file
is actually spooled by the LSF Batch system; therefore, the script can be modified right
after bsub returns for the next job submission.

When the script is specified on the bsub command line, the script is not spooled:

% bsub nyscri pt
Job <1234> submitted to default queue <nor nal >.

In this case the command line nyscri pt is spooled by LSF Batch, instead of the
contents of the myscr i pt file. Later modifications to the nyscri pt file can affect the
job’s behaviour.

unix Running a Job Under a Particular Shell

By default, LSF runs batch jobs using the Bourne (/ bi n/ sh) shell. You can
specify the shell under which the job is run. This is done by specifying an
interpreter in the first line of the script.

% bsub

bsub> #!/bin/csh -f

bsub> set coredump='ls |grep core'

bsub> if ("$coredump" I="") then

bsub> mv core core.‘date | cut -d" " -f1'

bsub> endif

bsub> myjob

bsub>~D

Job <1234> is submtted to default queue <nornal >.

116

6

The bsub command must read the job script from the standard input to set
the execution shell.

If you do not specify a shell in the script, the script is run using / bi n/ sh.
If the first line of the script starts with a ‘#’ not immediately followed by a
‘I’ then/ bi n/ csh is used to run the job. For example:

% bsub

bsub> # This is a comment line. This tells the system
to use /bin/fcsh to

bsub> # interpret the script.

bsub>

bsub> setenv DAY ‘date | cut -d" " -f1*

bsub> myjob

bsub>~D

Job <1234> is submtted to default queue <nornal >,

If running jobs under a particular shell is frequently required, you can
specify an alternate shell using a command-level job starter and run your
jobs interactively. See ‘Command-Level Job Starters’ on page 144 for detailed
information.

Submitting Jobs Using the Job Submission GUI

LSF Batch provides a GUI for submitting jobs. The main window of xbsub was shown
in the figure ‘xbsub Job Submission Window’ on page 23. All the job submission options
can be selected usingt he GUI .

LSF Bafch User’s Guide 117

6 Submitting Batch Jobs

Detailed parameters can be set by clicking the ‘Advanced’ button. The resulting
window is shown in Figure 11.

Figure 11. Advanced Parameters of the Job Submission Window

118

/. Tracking Batch Jobs

This chapter describes the commands that report and change the status of your jobs:

= Displaying the current status of batch jobs

= Finding out why jobs are pending or suspended

= Displaying the execution history of jobs

= Checking the output from jobs that have not completed yet

= Killing, suspending and resuming jobs

= Changing the order of your pending jobs within a queue

= Moving jobs to other queues

Displaying Job Status

The bj obs command reports the status of LSF Batch jobs.

% bj obs

JAB D UWER STAT QEE
3926 userl RWN priority
605 userl SSUSP idle
1480 userl PEND priority
7678 userl PEND priority
7679 userl PEND priority
7680 userl PEND priority
LSF Batch User’s Guide

FROM HOST EXEC HOST JCB_NAME

host f
host q
host d
host d
host a
host b

host ¢
host ¢

veril og
Test 4
gener at or
verilog
cor eHunt er

nyj ob

SBBMT_TI ME

Cet
Cet
et
ot
ot
ot

22 13:51
17 18: 07
19 18:13
28 13:08
28 13:12
28 13: 17

119

7 Tracking Batch Jobs

The - a option displays jobs that completed or exited in the recent past, along with
pending and running jobs.

The - r option displays only running jobs.

The - u username option displays jobs submitted by other users. The special user name
al | displays jobs submitted by all users.

For example, to find out who is running jobs on which hosts enter:
% bj obs -u all

You can also find jobs on specific queues or hosts, find jobs submitted by specific
projects, and check the status of specific jobs using their job IDs or names. See the
bj obs(1) manual page for more information.

Finding Pending or Suspension Reasons

When you submit a job to LSF Batch, it may be held in the queue before it starts
running and it may be suspended while running. The - p option to the bj obs
command displays the reasons a job is pending. Because there can be more than one
reason the job is pending or suspended, all reasons that contributed to the pending or
suspension are reported. For example:

% bj obs -p

7678 userl PEND priority hostD veril og Cct 28 13:08
Queue’s resource requirements not satisfied:3 hosts;

Unable to reach slave Isbatch server: 1 host;

Not enough job slots: 1 host;

The pending reasons will also mention the number of hosts for each condition. To get

the specific host names, along with pending reasons, use the -p and -I options to the
bjobs command. For example:

120

% bjobs -1p

Job 1d <7678>, User <userl> Project <default>, Status <PEND>,

eue <priority> Conmand <veril og>

Mon Cct 28 13:08:11: Submtted from host <host D>, OWD <$HOVE>, Re
quest ed Resources <type==any && swp>35>;

(S

PENDI NG REASONS:

Queue’s resource requirements not satisfied: hostb, hostk, hostv;
Unable to reach slave Isbatch server: hostH;

Not enough job slots: hostF;

SCHEDULING PARAMETERS:
ri5s rIm rlbm ut pg o Is it tmp swp mem

loadSched - 07 10 - 40 - - - - - -
loadStop - 15 25 - 80 - - - - - -
Note

In a cluster with many hosts (100-200 hosts), it may be too verbose or considered
unnecessary to always show the host names with the pending reasons. Therefore, use
the bjobs command with the -p option only.

The -1 option to the bjobs command displays detailed information about job status
and parameters, such as the job’s current working directory, parameters specified
when the job was submitted, and the time when the job started running.

% bj obs -1 7678

Job 1d <7678>, User <userl> Project <default>, Status <PEND>,

eue <priority> Conmand <veril og>

Mon Cct 28 13:08:11: Submtted from host <host D>, OWD <$HOVE>, Re
quest ed Resources <type==any && swp>35>;

(S

PENDI NG REASONS:

Queue’s resource requirements not satisfied:3 hosts;
Unable to reach slave Isbatch server: 1 host;
Not enough job slots: 1 host;

SCHEDULING PARAMETERS:

r15s rlm rl5m ut pg o Is it tmp swp mem
loadSched - 07 10 - 40 - - - - - -
loadStop - 15 25 - 80 - - - - - -

LSF Bafch User’s Guide 121

7] Tracking Batch Jobs

The | oadSched and | oadSt op thresholds displayed are those that apply to this job.
If the job is pending, the thresholds are taken from the queue. If the job has been
dispatched, each threshold is the more restrictive of the queue and execution host
thresholds for that load index.

Scheduling is also affected by other queue constraints such as RES REQ, STOP_COND,
RESUME_COND, fairshare policy, and others.

The - s option displays the reasons a batch job was suspended. Because the load
conditions are constantly changing, the reasons for suspension may be out of date.
Once the job is suspended it does not resume execution until its scheduling conditions
are met.

% bj obs -s
JOBI D USER STAT QUEUE FROM HOST EXEC HOST JOB _NAME SUBM T_TI ME
605 userl SSUSP idle hosta host c Test 4 Cct 17 18: 07

The host | oad exceeded the followi ng threshol d(s):

Pagi ng rate: pg;

Idle time: it;

In the example above, the job was suspended because the paging rate and interactive
idle time on the execution host went above the suspending threshold. Even though the
paging rate may have dropped back below the scheduling threshold, the job may

remain suspended because of another threshold. The job does not resume until all load
indices are within their scheduling thresholds.

Monitoring Resource Consumption of Jobs

Jobs submitted through the LSF Batch system have the resources they consume
monitored while they are running. The - | option of the bj obs command displays the
current resource usage of the job. This job-level information includes:

= Total CPU time consumed by all processes in the job

= Total resident memory usage in kbytes of all currently running processes in a job

= Total virtual memory usage in kbytes of all currently running processes in a job

122

= Currently active process group ID in a job
« Currently active processes in a job

The job-level resource usage information is updated at a maximum frequency of every
SBD SLEEP_TI ME seconds (see ‘The Ish.params File’ on page 193 of the LSF Batch
Administrator’s Guide for the value of SBD_SLEEP_TI ME). The update is done only if
the value for the CPU time, resident memory usage, or virtual memory usage has
changed by more than 10 percent from the previous update or if a new process or
process group has been created.

%bj obs -1 1531

Job 1d <1531>, Wser <userl>, Project <default> Status <RUN>, Queue

<priority> Command <exanpl e 200>

Fri Dec 27 13:04:14 Submitted from host <hostA> OND <$HOME>,
Speci fi edHost s <host D>;

Fri Dec 27 13:04:19: Started on <host D>, Execution Hone </hone/userl
>, Execution OND </ hone/ user 1>;

Fri Dec 27 13:05:00: Resource usage col | ect ed.

The CPU tine used is 2 seconds.

MEM 147 Kbytes; SWAP. 201 Kbytes PA@ D 8920; PIDs: 8920 8921 8922

SCHEDULI NG PARAMETERS!
ri5s rilm r15m ut pg io I's it tnp swp nem

| oadSched - - - - - - - - - - -
|oadStop - - - - - - - - - - -

Displaying Job History

Sometimes you want to know what has happened to your job since it was submitted.
The bhi st command displays a summary of the pending, suspended and running

LSF Bafch User’s Guide 123

7] Tracking Batch Jobs

time of batch jobs. The - | option of the bhi st command prints the time information
and a complete history of the scheduling events for each job.

%hi st -1 1531

Jobld <1531>, User <user1>, Project <default> Command< exanpl e200>

Fri Dec 27 13:04:14: Submtted fromhost <hostA> to Queue <priority
> OAD <$HOME>, Specified Hosts <host D>;

Fri Dec 27 13:04:19: D spatched to <host D>;

Fri Dec 27 13:04:19: Starting (Pid 8920);

Fri Dec 27 13:04:20: Running with execution hone </ hone/user1> Exe
cution OMND </ hone/ user 1>, Execution Pid <8920>

Fri Dec 27 13:05:49: Suspended by the user or adninistrator;

Fri Dec 27 13:05:56: Suspended: Witing for re-scheduling after bei
ng resuned byuser;

Fri Dec 27 13:05:57: Running;

Fri Dec 27 13:07:52: Done successfully. The CPUtine used is 28.3 s
conds.

Summary of tine in seconds spent in various states by Sat Dec 27
13: 07: 52 1997

PEND PSUSP RUN USUSP SSUSP UNKWN TOTAL
5 0 205 7 1 0 218

The - J job_name option of the bhi st command displays the history of all LSF Batch
jobs with the specified job name. Job names are assigned with the - J job_name option
of the bsub command.

LSF keeps job history information after the job exits, so you can look at the history of
jobs that completed in the past. The length of the history depends on how often the LSF
administrator cleans up the log files.

By default, bhi st only displays job history from the current event log file. The - n
option to the bhi st command allows users to display the history of jobs that
completed a long time ago, and are no longer listed in the active event log.

The LSF Batch system periodically backs up and prunes the job history log. The - n

num_logfiles option tells the bhi st command to search through the specified number
of log files instead of only searching the current log file. Log files are searched in

124

reverse time order; for example, the command bhi st -n 3 searches the currentevent
log file and then the two most recent backup files.

Viewing Chronological History

By default the bhi st command displays information from the job event history file,
| sb. event s, on a per job basis. The -t option to bhi st (1) can be used to display
the events chronologically, instead of grouping all events for each job. The - T option
allows for selecting only those events within a given time range.

For example, the following displays all events which occurred between 14:00 and 15:00
hours on a given day:

% bhi st

Ved
Ved

Ved
Ved
Ved

Ved
Ved
Ved
Ved
Ved
Ved

Ved
Ved

LSF Bafch User’s Guide

Cct
Cct

Cct
Cct
Cct

Cct
Cct
Cct

Cct
Cct
Cct

-t

22 14:01: 25:
22 14:08: 09:

22
22
22

22
22
22
22
22
22

22
22

-T 14:00, 14: 30

14:
14:
14:

14:
14:
14:
14:
14:
14:

14:
14:

03:
03:
03:

05:
05:
05:
05:
08:
10:

16:
17:

18:
18:
18:

06:
11:
11:
12:
26:
55:

55:
04:

Job <1574> done successfully;

Job <1575> submitted from host to Queue
CWD , User , Project , Command , Requested
Resources ;

Job <1575> di spatched to ;

Job <1575> starting (Pid 210);

Job <1575> running with execution home , E
xecution CAD , Execution Pid <210>;

Job <1577> submitted fromhost to Queue,
CWD , User , Project , Command , Requested
Resources ;

Job <1577> di spatched to ;

Job <1577> starting (Pid 429);

Job <1577> running with execution honme, Ex
ecution CW , Execution Pid <429>;

Job <1578> submitted fromhost to Queue, C
W , User , Project , Comand;

Job <1577> done successfully;

Job <1578> exited;

Job <1575> done successful ly;

125

7] Tracking Batch Jobs

Checking Partial Job Output

The output from an LSF Batch job is normally not available until the job is finished.
However, LSF Batch provides the bpeek command for you to look at the output the
job has produced so far. By default, bpeek shows the output from the most recently
submitted job; you can also select the job by queue or execution host, or specify the job
ID or job name on the command line.

% bpeek 1234

<< out put from stdout >>
Starting phase 1

Phase 1 done

Cal cul ati ng new par aneters

Only the job owner can use bpeek to see job output. The bpeek command will not
work on a job running under a different user account.

You can use this command to check if your job is behaving as you expected and kill the
job if it is running away or producing unusable results. This could save you time.

Tracking Job Arrays

The status individual elements of a job array can be viewed using the bj obs command
or the x| shat ch GUI. The JOBID field will be the same for all elements of the array
and the JOBNAME field will have the index of the element appended to it i.e

j obNane[i ndex] . The following output shows the result of submitting and viewing
the job array through bj obs.

% bsub -J "nmyArray[1-5]" sleep 10
Job <212> is submitted to default queue.

% bj obs

JCGBID WSER STAT QAKE FROM HCBT EXEC HOBT JCB NAME SUBM T_TI ME
212 userl RWN def aul t host A host B nyArray[1] Jul 25 12:45
212 userl PEND default host A nyArray[2] Jul 25 12:45
212 userl PEND default host A nyArray[3] Jul 25 12:45
212 userl PEND default host A nyArray[4] Jul 25 12:45
212 userl PEND default host A nyArray[5] Jul 25 12:45

126

To display summary information about the number of jobs in the different states in the
array, use the - A option of bj obs as follows.

% bj obs -A
JAB D NAME OMER NJCBS PEND RUN DONE EXI T SSUSP USUSP PSUSP
215 test Array[1- 100: 2] userl1 50 40 5 1 0 0 0 4

The history of jobs in the array can be viewed using the bhi st command. When the
jobld of an array is specified, the history of each element is displayed.

% bhi st 212

The history of a specific element(s) can be displayed by appending an index
specification after the job id. For example;

% bhist “212[5]"

Displaying Queue and Host Status

The bqueues and bhost s commands display the number of jobs in a queue or
dispatched to a host. For more information on these commands see ‘Batch Queues’ on
page 67 and ‘Batch Hosts’ on page 79.

Job Controls

After a job is submitted, you can control it by killing it, suspending it, or resuming it.

LSF Bafch User’s Guide 127

7 Tracking Batch Jobs

Killing Jobs

The bki I I command cancels pending batch jobs and sends signals to running jobs. By
default, on UNIX, bki I | sends the SI GKI LL signal to running jobs. For example, to
kill job 3421 enter:

% bki | | 3421
Job <3421> is being termnated

Before SI GKI LL issent, SI G NT and SI GTERMare sent to give the job a chance to catch
the signals and clean up. The signals are forwarded from the nbat chd to the sbat chd.
The sbat chd waits for the job to exit before reporting the status. Because of these
delays, for a short period of time after the bki | | command has been sent, bj obs may
still report that the job is running.

On Windows NT, job control messages replace the SI G NT and SI GTERMsignals, and
termination is implemented by the Ter m nat ePr ocess() system call.

Suspending and Resuming Jobs

The bst op and br esunme commands allow you to suspend or resume a job.
To suspend job 3421, enter:

% bstop 3421
Job <3421> is being stopped

UNIX bst op sends the SI GSTOP signal to sequential jobs and SI GTSTP to
parallel jobs. SIGTSTP is sent to a parallel job so the master process can trap
the signal and pass it to all the slave processes running on other hosts.

NT bst op causes the job to be suspended.

To resume the same job, enter:

% bresune 3421
Job <3421> is being resuned

128

Suspending a job causes your job to go into USUSP state if the job is already started, or
to go into PSUSP state if your job is pending. Resuming a user suspended job does not
put your job into RUN state immediately. If your job was running before the
suspension, br esune first puts your job into SSUSP state and then waits for sbat chd
to schedule it according to the load conditions.

Controlling Job Arrays

Each element of a job array is run independently of the others. You can Kill, suspend,
or resume all elements of the array, or only selected ones.

UNIX You can send an arbitrary signal to all elements of the array, or only
selected ones.

Using the job id of the array operates on the all elements of the array. Selecting
particular elements to control requires appending the index specification after the job
id. For example:

% bsub -J "nyArray[1-50]" sleep 10
Job <212> is submitted to default queue.

% bstop 212
Job <212>: Qperation is in progress

% bresune 212
Job <212>: Qperation is in progress

% bstop “212[5]"
Job <212[5]> is being stopped

% bstop “212[40-50]"
Job <212[40] > is being stopped

Job <212[50] > is being stopped
Note
When sending a command which operates on several elements of the array, the change

in the status of the elements may not show up immediately. The system ensures the
operation takes place in the background while other requests are being serviced.

LSF Bafch User’s Guide 129

7 Tracking Batch Jobs

The job name can also be used in selecting elements of the array (e.g bst op -J
"nyArray[40- 50] "). Since multiple job arrays may have the same job name the
command will affect all arrays with the name "myArray".

Changing the queueing position of a job through the bbot and bt op commands can

be done on individual elements of an array, but cannot operate on the entire array. For
example, btop “212[5]” to move the element with index 5 in the job array with ID
212 to the first queuing position.

Sending an Arbitrary Signal to a Job

To send an arbitrary signal to your job, use the -s option of the bkill command. You
can specify either the signal name or the signal number. On most versions of UNIX,
signal names and numbers are listed in the kill(1) or signal(2) manual page. On
Windows NT, only customized applications will be able to process job control
messages specified with the -s option.

%bkill -s TSTP 3421
Job <3421> is being signaled

This example sends the TSTP signal to job 3421.

Note
Signal numbers are translated across different platforms because different operating
systems may have different signal numbering. The real meaning of a specific signal is
interpreted by the machine from which the bkill command is issued. For example, if
you send signal 18 from an SunOS 4.x host, it means SIGTSTP. If the job is running
onan HP-UX, SIGTSTP s defined as signal number 25, so signal 25 is sent to the job.

Only the owner of a batch job or an LSF administrator can send signals to a job.
You cannot send arbitrary signals to a pending job; most signals are only valid for

running jobs. However, LSF Batch does allow you to kill, suspend and resume pending
jobs.

130

Moving Jobs Within and Between Queues

The bt op and bbot commands move pending jobs within a queue. bt op moves jobs
toward the top of the queue, so that they are dispatched before other pending jobs.
bbot moves jobs toward the bottom of the queue so that they are dispatched later. The
default behaviour is to move the job as close to the top or bottom of the queue as
possible. By specifying a position on the command line, you can move a job to an
arbitrary position relative to the top or bottom of the queue.

The bt op and bbot commands do not allow users to move their own jobs ahead of
those submitted by other users; only the dispatch order of the user’s own jobs is
changed. Only an LSF administrator can move one user’s job ahead of another.

Note
The bt op and bbot commands have no effect on the job dispatch order when fairshare
policies are used.

%bj obs -u all
JCBI D UISER STAT QEE FROMHBT BEXEC HOST J(B NAME SIBM T TIME

5308 user2 RN nornal host A host D sleep 500 Gt 23 10: 16
5309 user2 PEND night host A sleep 200 Cct 23 11: 04
5310 userl PEND night host B nyj ob Cct 23 13:45
5311 wuser2 PEND night host A sleep 700 Gt 23 18: 17

% bt op 5311
Job <5311> has been noved to position 1 fromtop.

%bj obs -u all
JOBI D UISER STAT QEE FROMHBT BEXEC HOST J(B NAME SIBM T TIME

5308 user2 RN nornal host A host D sleep 500 Gt 23 10: 16
5311 user2 PEND night host A sleep 700 Gt 23 18: 17
5310 userl PEND night host B nyj ob Cct 23 13:45
5309 user2 PEND night host A sleep 200 Cct 23 11: 04

Note that userl’s job is still in the same position on the queue. User2 cannot use bt op
to get extra jobs at the top of the queue; when one of his jobs moves up on the queue,
the rest of his jobs move down.

LSF Batfch User’s Guide 131

7 Tracking Batch Jobs

The bswi t ch command switches pending and running jobs from queue to queue. This
is useful if you submit a job to the wrong queue, or if the job is suspended because of
the queue thresholds or run windows and you would like to resume the job.

% bswitch priority 5309
Job <5309> is switched to queue <priority>

%bj obs -u all
JCBI D USER STAT QEE FROM HOST EXEC HOST JCB NAME SUBM T_TIME

5308 user2 RN nornal host A host D sleep 500 Cct 23 10: 16
5309 user2 RN priority hostA host B sleep 200 Cct 23 11:04
5311 wuser2 PEND night host A sleep 700 Cct 23 18:17
5310 wuserl PEND night host B nyj ob Qct 23 13:45

Job Modification

There is no “pre-submission” modification. Using the bnod command, jobs are
modified after they have been submitted. This section discusses the following topics:

- Submitted Job Modification
- Dispatched Job Modification

- Job Array Modification
Submitted Job Modification

For submitted jobs in PEND state, the bnod command is used by the job owner and
LSF administrator to modify command line parameters (see ‘Submitting Batch Jobs’ on
page 89).

To replace the job command linethe - Z " newConmmand" command option is used. The
following example replaces the command line option for job 101 with "myjob file":

% bmod -Z “myjob file” 101

132

To change a specific job parameter, use bmod with the bsub option used to specify the
parameter. The specified options replace the submitted options. The following
example changes the start time of job 101 to 2:00 a.m.:

% brmod -b 2: 00 101

To reset an option to its default submitted value (undo a bnod), append the n character
to the option name, and do not include an option value. The following example resets
the start time for job 101 back to its original value:

% bnod -bn 101

Resource reservation can be modified after a job has been started to ensure proper
reservation and optimal resource utilization.

Dispatched Job Modification

For dispatched (started) jobs, the bnrod command is used by the job owner and LSF
administrator to modify resource reservations (see ‘Resource Reservation’ on page 91). A
job is usually submitted with a resource reservation for the maximum amount
required. This command is used to decrease the reservation, allowing other jobs access
to the resource. The following example sets the resource reservation for job 101 to
25MB of memory and 50MB of swap space:

% brmod - R "rusage[nem=25: swp=50]" 101

Individual elements of a job array can be modified after the array is submitted to LSF
Batch. For example, this enables individual elements to have different resource
requirements or different dependency conditions to control scheduling behavior.

Job Array Modification

When a job array is submitted, all the elements (jobs) within the array share the same
job ID and submission parameters (i.e., resource requirements and submission queue).
The bnod command is used by the job owner and LSF administrator to change the
resource requirements for individual jobs or the entire array. Use the bswi t ch
command to change the submission queue for individual jobs or the entire array. Both
commands use the j obl d i ndexLi st extension to support job array modifications.

LSF Batfch User’s Guide 133

7 Tracking Batch Jobs

Note
Job array modifications affect only those jobs that have not been dispatched. To make
sure the modifications are applied to all specified jobs:
1. Submit the job array on hold using the - Hoption, bsub -H...

2. Make the job modifications, bnod, bswi t ch, ...

3. Release the job, br esune j obl d ...

Syntax
% bnod nodi fication "jobld[indexList]"
% bswi tch fromQ toQ "jobld[indexList]"

nodi fi cati on
specifies the resource modification using correct bsub syntax.

fromQ toQ
specifies the queue to which the job was originally submitted, and the queue
to which the job is to be switched.

jobld
specifies the job ID of the job array. The double quotes are not required if
i ndexLi st does not follow the job ID.

i ndexLi st

specifies the elements (jobs) to be modified. Elements do not need to occupy
continuous indices.

Examples

% brmod -R "nmem >= 200" 101
changes the memory requirements for all jobs in the job array to 200MB

% brmod -R "nmem >= 500" "101[3, 7]"
changes the memory requirements of jobs 3 and 7 to 500MB

134

% bnmod -w "101[1]" "101[10]"
makes sure job 10 runs after job 1

% bswitch defaultQ priorityQ "101[5]"
changes the submission queue for job 5 from defaultQ to priorityQ

To replace the entire job command line after submission, use bnod with the - Z option,
which takes the form bmod -Z “new_command” jobld . Consider the following
example:

% bmod -Z “myijob filel” 12223

This command modifies the command for job 12223, changing it to “myjob filel”.

To change specific job parameters after submission, use bnodi f y with the option(s)
you want to change. The bnodi f y command takes the same options as the bsub
command together with a job ID (see ‘Submitting Batch Jobs’ on page 89). The given
options replace the existing options of the specified job. For example, the following
command changes the start time of job 123 to 2:00 a.m.

% bnod -b 2: 00 123

To reset an option to its default value, append the n character to the option name, and
do not include an option value. For example:

% bnod -bn 123

Job 123 will be dispatched as soon as possible, ignoring any previously specified start
time.

Job arrays can be modified in the same way. Since all jobs share the same set of
parameters, modifying the array will affect all jobs in the array.

Job Tracking and Manipulation Using the GUI

Most of the operations discussed in this chapter can also be performed using the GUI.
The main window of x| sbat ch is shown in Figure 4 on page 24.

LSF Batfch User’s Guide 135

7] Tracking Batch Jobs

You can view job details by first select a job and then click on the ‘Detail’ button. The
resulting popup window is shown in Figure 12. This gives you the same information as
you can get by running the bj obs -1 command.

Figure 12. Detailed Job Information Popup Window

Jot Qs

Job I8 <10Fr User <userfy Pooject ddefeilve. Statis <USEPE Qdéie Croreal
Crammnnid choinloap:

Fra Hew Z1 18:1H L) Subsattes Prom heat <heakhs, O (EEDMESccms, Requantad Aa
soircas (Eypa == HEFRGS

Fri Mow E1 12:0d:37: Exacted on <hastir. Execuation Home «Mhowssdevlizfhbe, Exsoo
Eran W < oo dew] fofhfoom:, Exmcuetion usec rame cxfho

STRFENOING AEASDHS

The joby wes sdgpesdad by wsai:

SCHEDICIHG PARANETING

rlfs rim riSm ut
LisdEolinl - 7 ™ = Bl
LemdEtap - i1 - - =114

ool
=

=1

The ‘Hi st or y’ button gives you a popup window for job history as you can otherwise
get through the bhi st command.

To perform control actions on jobs, such as killing a job or suspending/resuming a job,
simply select the job and then click on an action button.

You can also invoke the xbsub window from inside xIsbatch to submit new jobs. If you

want to modify a job parameter, simply select on the job and click on ‘Mbdi f y’ button
to get the job modification popup window. Note that this window can also be invoked

136

by running xbnod from the command line. Figure 13 shows the xbnod window. This
window is the similar to the xbsub window.

Figure 13. Job Modi fi cati on Window

LSF Bafch User’s Guide 137

7] Tracking Batch Jobs

138

8. Running Interactive Jobs

Interactive jobs communicate with the user in real time. Programs like vi use a text-
based terminal interface; Computer Aided Design and desktop publishing
applications usually use a graphic user interface (GUI).

LSF can run interactive jobs on any host in the cluster transparently. All interaction
through a terminal or GUI, including keyboard signals such as CTRL-C, work the same
as if the job was running directly on the user’s host.

LSF supports interactive jobs in two optional ways:

e Using | st ool s programs, such as| srun, | sgrun, etc.

= Using LSF Batch to run interactive jobs.

This chapter contains detailed descriptions of the basic LSF tools for running jobs on
remote hosts as well as ways to run interactive jobs via LSF Batch.

Shared Files and User IDs

When LSF runs a task on a remote host, the task uses standard UNIX system calls to
access files and devices. The user must have an account on the remote host. All
operations on the remote host are done with the user’s access permissions.

Tasks that read and write files are accessing the files on the remote host. For load
sharing to be transparent, your files should be available on all hosts in the cluster using
a file sharing mechanism such as NFS or the Andrew File System (AFS). When your
files are available on all hosts in the cluster, you can run your tasks on any host without
worrying about how your task will access files.

LSF Batfch User’s Guide 139

8 Running Interactive Jobs

LSF can operate correctly in cases where these conditions are not met, but the results
may not be what you expect. For example, the / t np directory is usually private on
each host. If you copy a file into / t np on a remote host, you can only read that file on
the same remote host.

LSF can also be used when files are not available on all hosts. LSF provides the

I srcp(1) command to copy files across LSF hosts. You can use pipes to redirect the
standard input and output of remote commands, or write scripts to copy the data files
to the execution host.

Running Remote Jobs with | srun

The | srun command runs a job on a remote host. The default is to run the job on the
host with the least CPU load (the lowest normalized CPU run queue length) and the

most available memory. Command line arguments can be used to select other resource
requirements or to specify the execution host. For example, to run myj ob on the best
available host, enter:

%1 srun nyj ob

LSF automatically selects a host of the same type as the local host, if one is available.
By default the host with the lowest CPU and memory load is selected.

If you want to run nyj ob on a host with specific resources, you can specify the
resource requirements using the - R resreqoptiontol srun.

%I srun -R "swap>=100 & cserver" nyjob

This command runs myj ob on a host that has resource cser ver (see ‘Getting Cluster
Information’ on page 13) and has at least 100 megabytes of virtual memory available.

You can also configure LSF to store the resource requirements of specific jobs, as
described in ‘Configuring Resource Requirements’ on page 53. If you configure LSF with
the resource requirements of your job, you do not need to specify the - Rresreq
argument to | srun on the command line. If you do specify resource requirements on
the command line, they override the configured resource requirements.

140

If you want to run your job on a particular host, use the - moptionto | sr un:

%1 srun -m host D nyj ob

When you run an interactive job on a remote host, you can use signals as if it were
running locally. If your shell supports job control, you can suspend and resume the job
and bring the job to background or foreground as if it were a local job.

UNIX Some jobs, such as text editors, require special terminal handling. These
jobs must be run using a pseudo-terminal so that the special terminal
handling can be used over the network. The - P option to | sr un specifies
that the job should be run using a pseudo-terminal:

%I srun -P vi

To avoid typing in the | srun command every time you want to execute a
remote job, you can also use a shell alias or script to run your job.

For a complete description of the command line arguments, see the
| srun(1) manual page.

Running Parallel Jobs with | sgr un

Thel sgr un command allows you to run the same task on many hosts, either one after
another or in parallel. For example, to merge the / t np/ out file on hosts hostA, hostD,
and hostB into a single file named gout , enter:

%1 sgrun -m"host A hostD hostB' cat /tnp/out >> gout

To remove the / t np/ cor e file on all three hosts, enter:

%1 sgrun -m"host A hostD hostB' -p rm-r /tnp/core

The - p option tells | sgr un that the task specified should be run in parallel. If the - p

argument is not given, tasks are run on each host one after another. See | sgrun(1)
for more details.

LSF Bafch User’s Guide 141

8 Running Interactive Jobs

Thel sgrun -f host_fil e option reads the host_file file to get the list of hosts on
which to run the task.

Load Sharing Interactive Sessions

There are different ways to use LSF to start an interactive session on the best available
host.

Load Sharing Login

To login to the least loaded host, the simplest way is to use the | sl ogi n command.
| sl ogi n automatically chooses the best host and does an r | ogi n to that host. With
no argument, | sl ogi n picks a host that is lightly loaded in CPU, has few login
sessions, and is binary compatible with the current host.

If you want to log into a host with specific resources, use thel sl ogin -R resreq
option.

%Ilslogin -R"solaris order[ls:cpu]”
This command opens a remote login to a host that has the sunos resource, few other

users logged in, and a low cpu load level. This is equivalent to using | spl ace to find
the best host and then using r | ogi n to log in to that host:

% rlogin ‘Isplace -R "sunos order{ls:cpu]
Load Sharing X Sessions

If you are using the X Window System, you can start an xt er mthat opens a shell
session on the best host by entering:

%I srun sh -¢c "xterm &'
In this example, no processes are left running on the local host. The | sr un command

exits as soon as the xt er mstarts, and the xt er mon the remote host connects directly
to the X server on the local host.

142

8

If you are using a PC as a desk top machine and are running an X-Window server on
your PC, then you can start an X session on the least loaded machine. The following
steps assume you are using eXceed from Hummingbird Communications;

Click the Xst ar t icon in the eXceed4 program group

Choose ‘REXEC (TCP/ I P, ...)’asstart method, program type is X wi ndow

Set the host to be any server host in your LSF cluster, for example host A

Set the command line to be:

% Isrun sh -¢ “xterm s -display yourPC:0.0&"

Note

The ‘&’ in this command line is important as it frees resources on the server hostA once
the xt er mis running.

« Set description to be ‘Best’

e Choose the ‘i nst al | " button in the ‘Xst ar t * window. This installs ‘Best ’ as an
icon in the program group you choose (for example, xt er ns).

Now, by double clicking on the ‘Best * icon you will get an xt er mstarted on the least
loaded host in the cluster and displayed on your screen.

An alternative to start an X session on the best host is to submit it as a LSF Batch job:
%bsub xterm

This starts an xt er mon the least loaded host in the cluster and displays on your screen.
When you run X applications using | sr un or bsub, the environment variable

DI SPLAY is handled properly for you. It behaves as if you were running the X
application on the local machine.

LSF Bafch User’s Guide 143

8 Running Interactive Jobs

Command-Level Job Starters

Some jobs have to be started in a particular environment or require some type of setup
to be performed before they are executed. In a shell environment, this situation is often
handled by writing such preliminary procedures into a file that itself contains a call to
start the desired job. This is referred to as a wrapper.

If you want to run an interactive job that requires this type of preliminary setup, LSF
provides a job starter function at the command level. A command-level job starter
allows you to specify an executable file which will run prior to the actual job, doing any
necessary setup and running the job when the setup is complete.

If the environment variable LSF_JOB_STARTER is properly defined, the RES will
invoke the job starter (rather than the job itself), supplying your commands as
arguments.

UNIX The job starter is invoked from within a Bourne shell, making the
command-line equivalent:

/bin/sh -c "$LSF JOB STARTER comrand [argunent ...]"

where ’‘command [ar gunent . . .] ’are the command line arguments you
specified in| srun, | sgrun, or ch.

If you define the LSF_JOB_STARTER environment variable as follows:
%setenv LSF JOB STARTER "/ bin/csh -c"

Then you run a simple C-shell job:

% Isrun "a.out; echo hi
The following will be invoked to correctly start the job:
hin/sh ¢ "lbin/csh ¢ ‘a.out; echo hi"

NT The RES runs the job starter, passing it your commands as arguments:

LSF_JOB_STARTER command [argument ..]

144

If you define the LSF_JOB_STARTER environment variable as follows:
set LSF JB STARTER=C \cnd. exe /C

Then you run a simple DOS shell job:

C\>lsrundir /p

The following will be invoked to correctly start the job:

C\cnd.exe /Cdir /p

A Job Starter can also be defined at the queue level (see ‘Queue-Level Job Starters’ on
page 84 for more information) using the JOB_STARTER parameter, although this can
only be done by the LSF administrator. The queue-level job starter is functionally
similar to the interactive job starter, although it uses a slightly different mechanism. It
is primarily used to customize LSF for particular environments (for example, to
support Atria ClearCase).

Interactive Batch Job Support

When you run interactive jobs using | srun, | sgrun, etc., these utilities use LIM’s
simple placement advice for host selection. It is sometimes desirable from a system
management point of view to control all workload through a single centralized
scheduler, LSF Batch.

Since all interactive jobs submitted to LSF Batch are subject to policies of LSF Batch,
your system will have better control. For example, your system administrator may
dedicate two servers as interactive servers and disable interactive access to all other
servers by defining a interactive queue that only uses the two interactive servers.

Running an interactive job through LSF Batch also allows you to take the advantage of
the batch scheduling policy and host selection features for resource intensive jobs.

LSF Bafch User’s Guide 145

8 Running Interactive Jobs

To submit an interactive job, you should first find out which queues accept interactive
jobs by running bqueues -1 command. If the output of this command contains:

SCHEDULI NG PCLI A ES: NO | NTERACTI VE

then this is a batch only queue. If the output contains:

SCHEDULI NG PCLI A ES: ONLY_I NTERACTI VE

then this is an interactive only queue. If none of the above is defined or “SCHEDULI NG
PQOLI Cl ES” is not in the output of the bqueues -| command, then both interactive
and batch jobs are accepted by this queue.

You can use LSF Batch to submit an interactive job with the bsub command. Your job
can be submitted so that all input and output are through the terminal that you used
to type the command.

An interactive batch job is submitted by specifying the - | option of the bsub
command. When an interactive job is submitted, a message is displayed while the job
is awaiting scheduling. The bsub command will block until the job completes and no
mail is sent to the user by default. A user can issue a CTRL-C at any time to effectively
terminate the job. For example:

% bsub -1 -qgq interactive -n 4,10 | snmake
<<Wiiting for dispatch ...>>

would start LSF Make on 4 to 10 processors and display the output on the terminal.

It is possible to use the - | option together with the - i , - 0, and - e options (see ‘Input
and Output’ on page 90) to selectively redirect the streams to a files. For example:

%bsub -1 -q interactive -e job.err |snake

would save the standard error stream in the ’j ob. er r ’file, while standard input and
output would come from the terminal.

For jobs requiring pseudo-terminal support, bsub supports - | p and - | s options. See
the bsub(1) man page for more details.

146

Shell Mode for Remote Execution

Shell mode support is provided for running interactive applications through the RES
or through LSF Batch. Shell mode support is required for running interactive shells or
applications that redefine CTRL- Cand CTRL- Z keys (for example, j ove). The - S
optionto | srun, ch orl sgr un creates the remote task with shell mode support. The
default is not to enable shell mode support. The - | s option to bsub provides the same
feature for interactive batch jobs.

LSF Bafch User’s Guide 147

9. Using | stcsh

This chapter describes| st csh, an extended version of thet csh command interpreter.
The | st csh interpreter provides transparent load sharing of user jobs.

This chapter is not a general description of the t csh shell; only the load sharing
features are described in detail.

| st cshisaconvenientway for you to take advantage of LSF. Your commands are sent
transparently for execution on faster hosts to improve response time or you can run
commands on remote hosts explicitly.

Resource requirements for specific commands can be configured using task lists; see

‘Configuring Resource Requirements’ on page 53. Remote execution is transparent to the
user; keyboard signals such as CTRL-z and CTRL-C are automatically sent to the remote
task.

NT Note
Interactive tasks, including | st csh, are not supported on Windows NT.

Starting | st csh

If you normally use some other shell, you can start | st csh from the command line.
Make sure that the LSF commands are in your PATH environment variable and then
enter | st csh. If you have a. cshr c file in your home directory, | st csh reads it to
set variables and aliases. Use the exi t command to get out of | st csh.

LSF Bafch User’s Guide 149

Q Usingl stcsh

Using | st csh as Your Login Shell

If your system administrator allows, you can use LSF as your login shell. The / et ¢/
shel | s file contains a list of all the shells you are allowed to use as your login shell.
The chsh command can set your login shell to any of those shells. Ifthe/ et ¢/ shel | s
file does not exist, you cannot set your login shell to | st csh.

For example, user3 can run the command:
% chsh user3 /usr/local /| sf/bin/lstcsh
The next time user3 logs in, the login shell will be | st csh.

If you cannot set your login shell using chsh, you can use one of the standard system
shells to start| st csh when you log in. The easiest way is to use chsh to set/ bi n/ sh
to be your login shell and then edit the . pr of i | e file in your home directory to start
| st csh, as shown below.

SHELL=/usr/l ocal /| sf/bi n/|stcsh
export SHELL
exec $SHELL -I

Automatic Remote Execution

Every time you enter a command, | st csh looks in your task lists to determine
whether the command can be executed on a remote host and to find the configured
resource requirements for the command. See ‘Configuring Resource Requirements’ on
page 53 for more information about task lists.

If the command can be executed on a remote host, | st csh calls the LIM to find the best
available host. The first time a command is run on a remote host, a server shell is
started on that host. The command is sent to the server shell, and the server shell starts
the command on the remote host. All commands sent to the same host use the same
server shell, so the start-up overhead is only incurred once.

150

9

If no host is found that meets the resource requirements of your command, it is run on
the local host.

Host Redirection

You can explicitly specify the eligibility of a command line for remote execution using
the ‘@ character. It may be anywhere in the command line except in the first position
(‘@ as the first character on the line is used to set the value of shell variables).

Host redirection overrides the task lists, so you can force commands from your local
task list to execute on a remote host or override the resource requirements for a
command.

‘@ followed by nothing means that the command line is eligible for remote execution.
‘@ followed by a host name forces the command line to be executed on that host. ‘@
followed by the reserved word | ocal forces the command line to be executed on the
local host only. ‘@ followed by ‘/ * and a resource requirement string means that the
command is eligible for remote execution and that the given resource requirements
must be used instead of those in the remote task list.

% host name @ostD

<< renot e execution on host D >>
host D

% host nane @t ype==al pha

<< renote execution on hostB >>
host B

For ease of use, the host names and the reserved word | ocal following ‘@ can all be
abbreviated as long as they do not cause ambiguity. Similarly, when specifying
resource requirements following the ‘@, it is necessary to use ‘/ ’ only if the first
requirement characters specified are also the first characters of a host name.

You do not have to type in resource requirements for each command line you type if

you put these task names into remote task list together with their resource
requirements by running | srt asks.

LSF Bafch User’s Guide 151

Q Usingl stcsh

Job Control

Job control in| st csh is the same as in t csh except for remote background jobs.
| st csh numbers shell jobs separately for each execution host.

The output of the built-in command j obs lists the background jobs together with their
execution hosts. This break of transparency is intentional to provide you with more
control over your background jobs.

%sleep 30 @ostD &

<< renot e execution on hostD >>

[1] 27568

%sl eep 40 @ostD &

<< renot e execution on hostD >>

[2] 10280

%sl eep 60 @ostB &

<< renot e execution on hostB >>

[1] 3748

%] obs

<host D>

[1] + Running sl eep 30
[2] Runni ng sl eep 40
<host B>

[1] + Running sl eep 60

To bring a remote background job to the foreground, the host name must be specified
together with ‘@, as in the following example:

%fg %2 @ostD
<< renot e execution on hostD >>
sl eep 40

Built-in Commands

| st csh supports two built-in commands to control load sharing, | srode and
connect .

152

The | snrode Command

The | snode command takes a number of arguments that control how | st csh
behaves. With no arguments, | snode displays the current settings:

% | snode

LSF 3.1

Copyright 1992-1997 PH atform Conputing Corporation

LSF enabl ed, | ocal node, LSF on, verbose, no eligibility verbose, notim
i ng.

The | smode command reports that LSF is enabl ed if | st csh was able to contact the
LIM when it started up. If LSF is di sabl ed, no load-sharing features are available.

| snode [on | off]
Turns load sharing on or off. The default is on.

| snode [l ocal | renote]
Sets | st csh to use local or remote mode. The default is local. Refer to ‘Modes
of Operation’ on page 154 for a description of local and remote modes.

| snode [e | -¢€]
Turns on (e) or off (-) eligibility verbose mode. If eligibility verbose mode is
on, | st csh shows whether the command is eligible for remote execution, and
displays the resource requirement used if the command is eligible. The default
is off.

| snode [v | -V]
Turns on (v) or off (- v) task placement verbose mode. If verbose mode is on,
| st csh displays the name of the host where the command is run, if the
command is not run on the local host. The default is on.

I snode [t | -t]
Turns on (t) or off (- t) wall clock timing. If timing is on, the actual response
time of the command is printed. This time includes all remote execution
overhead. The default is off.

LSF Bafch User’s Guide 153

Q Usingl stcsh

The connect Command

| st csh opens a connection to a remote host when the first command is executed
remotely on that host. The same connection is used for all future remote executions on
that host. The | st csh connect command with no argument displays the connections
that are currently open.

The connect host command creates a connection to the named host. By connecting to
a host before any command is run, the response time is reduced for the first remote
command sent to that host.

| st csh has a limited number of ports available to connect to other hosts. By default
each shell can only connect to 15 other hosts.

% connect
GONNECTED WTH SERVER SHHELL
host A +

% connect hostB
Connected to hostB

% connect

CONNECTED WTH SERVER SHELL
host A +

host B -

The server shell is a process created on the remote host to handle | st csh jobs. The
server shell is started when the first command is executed on the remote host. In the
previous example, the connect command created a connection to host hostB, but the
server shell has not started.

Modes of Operation

LSF maintains two task lists for each user, a local list and a remote list. Commands in
the local list must be executed locally. Commands in the remote list can be executed
remotely. If a command is in neither list, you can choose how | st csh handles the
command.

154

9

| st csh has two modes of operation: local and remote. The local mode is the default
mode. In local mode, a command line is eligible for remote execution only if all of the
commands on the line are present in the remote task list, or if the ‘@ character is
specified on the command line to force it to be eligible. In remote mode, a command
line is considered eligible for remote execution, if none of the commands on the line is
in the local task list.

Local mode is conservative and can fail to take advantage of the performance benefits
and load-balancing advantages of LSF. Remote mode is aggressive and makes more
extensive use of LSF. However, remote mode can cause inconvenience when | st csh
tries to send host-specific commands to other hosts.

Using the LSF commands | sl t asks(1) and| srtasks(1), you can inspect and
change the memberships of the local and remote task lists. You can optionally associate
resource requirements with each command in the remote list to help LSF find a suitable
execution host for the command. If there are multiple eligible commands on a
command line, their resource requirements are combined for host selection. See
‘Remote Task List File’ on page 53 for more information on using task lists and resource
requirements.

Differences from Other Shells

When a command is running in the foreground on a remote host, all keyboard input
(type-ahead) is sent to the remote host. If the remote command does not read the input,
itis lost. | st csh has no way of knowing whether the remote command reads its
standard input. The only way to provide any input to the command is to send
everything available on the standard input to the remote command in case the remote
command needs it. As a result, any type-ahead entered while a remote command is
running in the foreground, and not read by the remote command, is lost.

The ‘@ character has a special meaning when it is preceded by white space. This means
that the ‘@ must be escaped with a backslash “\’ to run commands with arguments that
start with ‘@, like f i nger . This is an example of using finger to get a list of users on
another host:

% finger @ther. donain

LSF Batfch User’s Guide 155

Q Usingl stcsh

Normally the f i nger command tries to contact the named host. Under | st csh, the
‘@character is interpreted as a request for remote execution, so the shell tries to contact
the RES on the host other.domain to remote execute the f i nger command. If this host
is not in your LSF cluster, the command fails. When the ‘@ character is escaped, it is
passed to f i nger unchanged and f i nger behaves as expected.

%finger \@ostB

Writing Shell Scriptsin | st csh

You should write shell scripts in / bi n/ sh and use the | st ool s commands for load
sharing. However, | st csh can be used to write load-sharing shell scripts.

By default, an | st csh script is executed as a normal t csh script with load-sharing
disabled. The |l st csh - L option tells the | st csh that the script should be executed
with load sharing enabled, so individual commands in the script may be executed on
other hosts.

There are three different ways to run an | st csh script with load sharing enabled: run
| stcsh - L script, start an interactive | st csh and use the sour ce command to read
the script in, or make the script executable and put ‘#! /usr/l ocal /1 sf/bin/

| st csh - L’ as the first line of the script (assuming you install | st csh inthe/ usr/
| ocal /| sf/ bi n directory).

Limitations

A shell is a very complicated application by itself. | st csh has certain limitations:
= Native Language System is not supported. To use this feature of the t csh, you

must compile t csh with SHORT _STRI NGS defined. This causes complications for
characters flowing across machines.

156

= Shell variables not propagated across machines. When you set a shell variable
locally, then run a command remotely, the remote shell will not see that shell
variable. Only environment variables are automatically propagated.

< The f g command for remote jobs must use ‘@’, as shown by examples in ‘Job
Control’ on page 152.

e |stcshisbasedontcsh 6. 03 (7 bit mode). It does not support the new features
of the latestt csh.

LSF Bafch User’s Guide 157

10.Using LSF Make

This chapter describes how to use LSF Make to perform parallel software builds and
similar tasks.

LSF Make is based on GNU nmake, and supports all GNU make features. Additional
command line options control parallel execution. GNU nake is upwardly compatible
with the make programs supplied by most UNIX vendors.

To use LSF Make you do not need to change your makefile, although reorganizing the
contents of the makefile might increase the parallelism and therefore reduce the
running time.

The | smake(1) manual page describes the command line options that control load
sharing. The gnake(1) manual pages describes the other command line options.

NT Note
LSF Make is not supported on Windows NT.

Parallel Execution

Many tasks consist of many subtasks, with dependencies between the subtasks. For
example, compiling a software package requires compiling each file in the package and
then linking all the compiled files together.

In many cases most of the subtasks do not depend on each other. For a software
package, the individual files in the package can be compiled at the same time; only the
linking step needs to wait for all the other tasks to complete.

In an LSF cluster you can use LSF Make to select a group of hosts and run parts of your
make in parallel.

LSF Batfch User’s Guide 159

10 Using LSF Make

Invoking LSF Make

LSF Make supports all the GNU nake command line options.
Specifying the Number of Processors

Thel smake -j num_processors option tells LSF Make to ask the LIM for
num_processors processors. If fewer processors are available, LSF Make uses all the
available processors. If no processors are available and the local host meets all resource
requirements specified using the | smake - Roption, all make tasks are run on the
local host.

By default LSF Make selects the same host type as the submitting host. This is
necessary for most compilation jobs; all components must be compiled on the same
host type and operating system version to run correctly. If your make task requires
other resources you can override the default resource requirements with the | smake
- R resreq option.

For example, to build your software in parallel on 10 processors, enter:

% | smake -j 10

If you want to take advantage of parallelism between the CPU and 1/0 on a powerful
host, you can also specify the number of concurrent jobs for each processor using the
| smake - c option, as follows:

% | smake -j 10 -c 2

This selects up to 10 processors and starts two tasks on each processor.

File Server Load

LSF Make can significantly reduce the response time of your make; however, it may
also overload your file server or network if the jobs you are running are 170 intensive.

160

10

You can specify a threshold load so that parallelism is automatically reduced when the
file server load is above a threshold and expanded when the file server load is below
the threshold.

% | snmake -j 10 -F "r15s <5 && pg < 20"

This LSF Make job uses up to 10 hosts, and reduces the parallelism if the file server
CPU load r 15s goes beyond 5, or if the file server paging rate goes beyond 20 pages
per second. LSF Make automatically determines the file server for the current working
directory.

Tuning Your Makefile

The smallest unit that LSF Make runs in parallel is a single make rule. If your makefile
has rules that include many steps, or rules that contain shell loops to build sub-parts of
your project, LSF Make runs the steps serially.

You can increase the parallelism in your makefile by breaking up complex rules into
groups of simpler rules. Steps that must run in sequence can use nake dependencies
to enforce the order. LSF Make can then find more subtasks to run in parallel.

Building in Subdirectories

If your make job is divided into subdirectories, | snmake - Mcan process the
subdirectories in parallel. The total number of parallel tasks is shared over all the
subdirectories. Without the - Moption, LSF Make processes subdirectories
sequentially, although tasks within each subdirectory can be run in parallel.

To process subdirectories in parallel they must be built as separate targets in your
makefile. You must specify the make command for each subdirectory with the built-in
$(MAKE) macro so that LSF Make can substitute the correct | smake command for the
subdirectory.

LSF Batfch User’s Guide 161

10 Using LSF Make

Some makefiles may work correctly when run on a single machine, but may not work
correctly when run in parallel through LSF Make.

Below is a makefile rule that uses a shell loop to process subdirectories.

DRS =1lib msc main
pr og:
for subdir in $(DRS) ; do \
cd $subdir ; $(MAKE) ; cd .

When this makefile is run on a single machine, the directories are processed
sequentially, i.e. | i b is built before m sc and mai n. However, when run using

| smake with the - Moption, all directories can be built in parallel. Therefore, it is
possible for the ni sc and nmai n directories to be built before | i b, which is not correct.

Below is a set of makefile rules to perform the same tasks and allows the subdirectories
to be built in parallel in the correct order.An extra rule is added so that the | i b and
m sc subdirectories are built before the main directory:

DRS = lib msc main
prog: $(DRS)
$(DRS):

cd $@; $(MAKE)

Running | smake as a Batch Job

make jobs often require a lot of resources, but no user interaction. Such jobs can be
submitted to the LSF Batch system so that they are processed when the needed
resources are available. | smake includes extensions to run as a parallel batch job
under LSF Batch;

% bsub -n 10 | snake
This command queues an LSF Make job that needs 10 hosts. When all 10 hosts are
available, LSF Batch starts LSF Make on the first host, and passes the names of all hosts

in an environment variable. LSF Make gets the host names from the environment
variable and uses the RES to run tasks.

162

10

You can also specify a minimum and maximum number of processors to dedicate to
your make job (see ‘Minimum and Maximum Number of Processors’ on page 104):

% bsub -n 6, 18 | snmake

Because LSF Make passes the suspend signal (SIGTSTP) to all its remote processes, the
entire parallel make job can be suspended and resumed by the user or the LSF Batch
system.

Differences from Other Versions of nake

LSF Make is fully compatible with GNU nake. There are some incompatibilities
between GNUnake and some other versions of make; these are beyond the scope of this
document.

When LSF Make is running processes on more than one host, it does not send standard
input to the remote processes. Most makefiles do not require any user interaction
through standard 1/0. If you have makefile steps that require user interaction, you can
put the commands that require interaction into your local task list. Commands in the
local task list always run on the local host, where they can read from standard input
and write to standard output.

LSF Bafch User’s Guide 163

11.Checkpointing and Migration

Checkpointing allows you to take a snapshot of the state of a running batch job, so that
the job can be restarted later. There are two main reasons for checkpointing a job: fault
tolerance and load balancing.

A batch job can be checkpointed periodically during its run. If the execution host goes
down for any reason, the job can resume execution from the last checkpoint when the
host comes back up, rather than having to start from the beginning. The job can also be
restarted on a different host if the original execution host remains unavailable.
Sometimes one host is overloaded while the others are idle or lightly loaded. LSF Batch
can checkpoint one or more jobs on the overloaded host and restart the jobs on other
idle or lightly loaded hosts. Job migration can also be used to move intensive jobs away
from hosts with interactive users such as desktop workstations, so that the intensive
jobs do not interfere with the users.

Topics covered in this chapter are:

= approaches to checkpointing

= submitting a checkpointable job

= checkpointing a job

= restarting a job from its checkpoint

= job migration

= submitting jobs that are automatically rerun if the execution host fails

building checkpointable batch jobs

LSF Batfch User’s Guide 165

11 Checkpointing and Migration

Approaches to Checkpointing

Checkpointing can be implemented at three levels. These levels are called kernel-level,
user-level and application-level.

LSF Batch uses the kernel-level support available on ConvexOS, Cray (UNICOS), and
SPP-UX, IRIX 6.4, and NEC SX-4 systems to implement checkpointing on these
machines. LSF Batch provides user-level support on most other platforms (HP-UX,
DEC Alpha, SGI IRIX 5.3 and 6.2, Solaris 2.5.1 and 2.6, SunOs 4, and AlX 4). LSF Batch
also supports application-level checkpointing.

Kernel-level Checkpointing

In kernel-level checkpointing, the operating system supports checkpointing and
restarting processes. The checkpointing is transparent to applications: they do not have
to be modified or linked with any special library to support checkpointing.

User-level Checkpointing

Application programs to be checkpointed are linked with a checkpoint user library.
Upon checkpointing, a checkpoint triggering signal is sent to the process. The
functions in the checkpoint library respond to the signal and save the information
necessary to restart the process. On restart, the functions in the checkpoint library
restore the execution environment for the process. To applications, checkpointing is
transparent. But unlike kernel-level support, applications must be relinked to allow
checkpointing.

Application-level Checkpointing

Applications can be coded in a way to checkpoint themselves either periodically or in
response to signals sent by other processes. When restarted, the application must look
for the checkpoint files and restore its state.

166

11

Checkpoint Directory

Checkpoint directory stores checkpoint files that are necessary to recreate a
checkpointed job. LSF allows more than one job to be checkpointed into the same
directory. Each job is saved in a different subdirectory named by the job ID.

LSF Batch automatically renames chkpnt di r/ jobld to chkpnt di r / newjobld after a
jobis restarted. A conflict may occur when a directory chkpnt di r/ jobld already exists
and the restart jobID is the same as the existing directory. In this case, LSF Batch first
renames the existing directory chkpnt di r/ jobld to chkpnt di r/ jobld. bak.

If the conflict cannot be solved, sbat chd will report it to mbat chd and the job will be
aborted.

Uniform Checkpointing Interface

All interaction between LSF and the platform or application dependent facility goes
through a common interface provided by two executables: echkpnt and erest art .
echkpnt isinvoked when LSF needs to checkpoint a job. er est art is invoked when
LSF needs to start a previously checkpointed job.

For systems supporting kernel-level checkpointing, echkpnt and er est art are just
wrapper scripts for the vendor’s checkpointing commands. User-level checkpointing
for the supported platforms uses whichever echkpnt Zer est art interacts with the

supplied checkpoint library.

You can follow the format given below to extend or replace echkpnt and er est art
for other checkpoint facilities, including the application-level checkpointing.

The echkpnt Command

The echkpnt command must support the following arguments and take appropriate
actions to perform the checkpointing:

echkpnt [-c] [-f] [-k |-s] [-d chkpnt _dir] process-group-id

1. echkpnt and er est art are by default located in the LSF_SERVERDI Rdirectory (as
defined in| sf . conf). You can specify another directory with the LSF_ECHKPNTDI R
environment variable.

LSF Batfch User’s Guide 167

11 Checkpointing and Migration

-C Copy all regular files in use by the checkpointed process to the checkpoint
directory.
-f Checkpoint the job even if non-checkpointable conditions exist (non-

checkpointable conditions are specific to the type of checkpoint facility being
used). This may create checkpoint files that will not restart properly.

-k Kill the job if the checkpoint operation is successful. Default is that the job
continues execution after being checkpointed. If this option is specified and
the checkpoint fails for any reason, the job continues normal execution.

-s Stop the job if the checkpoint operation is successful. Default is that the job
continues execution after being checkpointed. If this option is specified and
the checkpoint fails for any reason, the job continues normal execution.

-d chkpnt _dir
The directory containing the checkpoint files. Default is the current directory.

process-group-id
The process group ID of the job to be checkpointed.

The er est art Command

Theer est art command must support the following arguments and take appropriate
actions to perform the restart:

erestart [-c] [-f] chkpnt dir

-C Copy data files from the checkpoint directory to the original pathname. If any
of the process’s data files are copied into the checkpoint directory at the time
of checkpoint, this option will cause restart to replace the contents of the
original files with the copies. This option is currently only supported on

ConvexOS.
-f Force a restart of the process even if non-restartable conditions exist.
chkpnt _dir

Checkpoint directory.

168

11

When LSF Batch calls er est ar t , it will first pass the process-ID and process group-
ID of the original job via the environment variables LSB_ RESTART_PI Dand

LSB RESTART_Pd D, respectively. Then it waits for a message from the standard
error of er est art before proceeding. Upon success, er est art sends back either a
message of "pi d=NEW PI D pgi d=NEW Pd D” if there are any restart process-id or
process group-id changes, or a null message by closing the standard error if there are
not any changes. On failure, LSF Batch expects er est ar t will write the error
messages via its standard error.

Submitting Checkpointable Jobs

Checkpointable jobs are submitted using the - k " checkpoint_dir] period] " option of
the bsub command. The checkpoint_dir parameter specifies the directory where the
checkpoint files are created. The period parameter specifies an optional time interval in
minutes for automatic and periodic checkpointing. If the period parameter is specified,
the checkpoint directory and period must be enclosed in quotes.

If the checkpoint period is not specified, the job is considered checkpointable but it is
not automatically checkpointed. A checkpoint can be created for any checkpointable
batch job using the bchkpnt command. If the checkpoint period is specified, LSF
Batch automatically checkpoints the job at the specified time interval.

%bsub -k "io.chkdir 10" io_job
Job <3426> is subnitted to default queue <nornal >.

%bj obs -1

Job 1d <3426>, Wser <user2> Satus <RIN>, Queue <nornal >, Command <i o j ob>

Thu Gct 24 16: 50: 27: Subnitted fromhost <hostB> OND <$HOME/ tnp>, Ch
eckpoi nt period 10 nin., Checkpoint directory <i
0. chkdi r/ 3426>;

Thu Cct 24 16: 50: 28: Started on <host B>,

ri5s rim ri15m ut pg io Is it tnp swWp nem
| oadSched - 0.7 1.0 - 4.0 - 12 - oM - -
| oadStop - 1.5 25 - 80 - 15 - - - -

LSF Batfch User’s Guide 169

11 Checkpointing and Migration

This example submits the checkpointable batch job i 0_j ob. Checkpoint files will be
stored in the directory io.chkdir/3426 (relative to the current directory), and
checkpoints will automatically be created every 10 minutes, each overwriting the
previous one.

Note
It is your responsibility to clean up the checkpoint directory when it is no longer
needed.

If the checkpoint directory does not exist, LSF Batch creates it. If it does exist, it must
be writable by the user. To restart a job on a different host, the checkpoint files must be
stored in a directory accessible to both hosts.

Checkpointing a Job

In addition to automatic checkpointing, users can checkpoint jobs explicitly with the
bchkpnt command. A job is checkpointable only if it was submitted with the - k
option to bsub.

The-p period optionto bchkpnt allows you to set or change the checkpointing period
for a job. period is specified in minutes. If period is 0 (zero), periodic checkpointing is
turned off. Otherwise, periodic checkpointing is turned on and the checkpoint period
is set to the value given.

Some jobs cannot be checkpointed and restarted correctly because it is not possible to
recreate the running state of the job. See ‘Limitations’ on page 178 and the chkpnt (1)
manual page on ConvexOS and Cray systems for a list of conditions that can cause
checkpointing to fail.

The - f option to bchkpnt forces the job to be checkpointed, even if some condition
exists that would normally make the job non-checkpointable. When a non-
checkpointable job is checkpointed using the - f flag, the job may not be restarted
correctly.

The - k option to bchkpnt checkpoints and Kills the batch job as an atomic action. This

guarantees that the job does not do any processing or 170 after the checkpoint, so that
the restarted job does not repeat any operations already performed by the original job.

170

11

%bchkpnt -f -p 15
Job <3426> i s bei ng checkpoi nt ed

%bj obs -1

Job Id <3426>, ker <user2> Satus <RIN>, Queue <nornal > Conmand <i o j ob>

Thu Cct 24 16: 50: 27: Subnitted fromhost <hostB>, OMD <$HOW tnp>, Ch
eckpoi nt period 15 mn., Checkpoint directory <i
0. chkdi r/ 3426>;

Thu Gt 24 16: 50: 28: Started on <host B>

ri5s rlm rl15m ut pg io Is it tnp swWp nem
| oadSched - 0.7 1.0 - 4.0 - 12 - oM - -
|loadSop - 1.5 25 - 8.0 - 15 - - - -
%bhi st -1

Job 1d <3426>, Wser <user2> Command <i o_j ob>

Thu Cct 24 16: 50: 27: Submitted fromhost <hostB> to Queue <normal >, C
WD <$HOME/ t np>, Checkpoi nt period 10 mn., Check
point directory <io.chkdir/3426>;

Thu Gt 24 16: 50: 28: Started on <hostB>, Pid <4705>;

Thu Cct 24 16: 51: 21: Checkpoint initiated (actpid 4717);

Checkpoint period is 15 mn.;

Thu Cct 24 16: 51: 29: Checkpoi nt succeeded (actpid 4717).

Surmary of tine in seconds spent in various states by Fi Gt 24 16:51: 36 1997

PEND PSUSP RUN UsuUsP SSUsP UNKWN TOTAL
1 0 68 0 0 0 69

Restarting a Checkpointed Job

A checkpointed batch job can be restarted on a host of the same type as, and running
the same operating system version as, the original execution host. The executable being
run and all open files must be located at the same absolute path name.

In addition to automatic job restart, specified with the - r option to bsub, LSF Batch
provides the br est art command that restarts a checkpointed batch job from the

LSF Bafch User’s Guide 171

11 Checkpointing and Migration

information stored in the checkpoint directory. The checkpoint directory must have
been created by a previously submitted job that was checkpointed successfully.

When you restart a job with br est art command, you should specify a jobld and
chkpntDir directory. The command looks like:

brestart chkpntOr [1astJobld|

where lastJobld must be specified if there is more than one jobld directory under
chkpntDir.

br est art creates a new batch job that uses the checkpoint information. The restarted
job is assigned a new job ID number, and is placed at the end of the specified queue.
The job begins executing when a suitable host is available, like any other batch job.

The br est art command takes many of the same options as the bsub command to
specify the conditions under which the restarted job runs. The restarted job has the
same output file and file transfer specifications, job name, run window signal value,
checkpoint directory and period, and rerunability as the original job.

%brestart io.chkdir 3426
Job <3427> is subnitted to default queue <nornal >.

%bj obs -1

Job Id <3427>, ker <user2> Satus <RIN>, Queue <nornal > CGommand <i 0 j ob>

Thu Cct 24 17:05: 01: Subnitted fromhost <hostB>, OMD <$HOW t np>, Ch
eckpoi nt directory <io.chkdir/3427>;

Thu Gt 24 17:05: 01: Started on <host B>;

riss rilm r15m ut pg io Is it tnp swp nem
| cadSched - 0.7 1.0 - 4.0 - 12 - oM - -
lcadStop - 1.5 2.5 - 8.0 - 15 - - - -

172

11

Job Migration

Checkpointable jobs and rerunable jobs (jobs that are submitted with the bsub -r
option) can be migrated to another host for execution if the current host is too busy or
the host is going to be shut down. Such jobs can be moved from one host to another, as
long as both hosts are binary compatible and run the same version of the operating
system.

The job’s owner or the LSF administrator can use the bni g command to migrate jobs.
If the job is checkpointable, the bni g command first checkpoints it. Then LSF kills the
running or suspended job, and restarts or reruns the job on another suitable host if one
is available. If LSF is unable to rerun or restart the job immediately, the job reverts to
PEND status and is requeued with a higher priority than any submitted job, so it is
rerun or restarted before other queued jobs are dispatched.

%bm g 3426
Job <3426> is being mgrated

%bhist -1 3426

Job 1d <3426>, Wser <user?2> Command <i o_j ob>

Thu Cct 24 16: 50: 27: Subnmitted fromhost <hostB> to Queue <normal >, C
VD <$HOWE t np>, Checkpoint period 10 mn., Check
poi nt directory <io.chkdir/3426>;

Thu Cct 24 16: 50: 28: Sarted on <hostB>, PFid <4705>;

Thu Gt 24 16: 51: 21: Checkpoint initiated (actpid 4717);

Checkpoint period is 15 mn.;

Thu Cct 24 16: 51: 29: Checkpoi nt succeeded (actpid 4717);

Thu Qct 2424 16:53:42: Mgration request ed;

Thu Cct 24 16: 54: 03: Mgration checkpoint initiated (actpid 4746);

Thu Cct 24 16: 54: 15: M gration checkpoi nt succeeded (actpid 4746);

Thu Cct 24 16: 54: 15: Pending: Mgrating job is waiting for reschedul e;

Thu Cct 24 16: 55: 16: Sarted on <l enon>, P d <10354>.

Surmary of tine in seconds spent in various states by i Gt 24 16:57: 26 1997

PEND PSUSP RUN UsusP SSUsP UNKVN TOTAL
62 0 357 0 0 0 419

LSF Batfch User’s Guide 173

11 Checkpointing and Migration

Queues and Hosts for Automatic Job Migration

LSF Batch will not automatically migrate a job unless the job has a migration threshold.
A job has a migration threshold if it is dispatched from a queue or to a host that has a
migration threshold defined. The bqueues -1 and bhosts -1 commands display
the migration threshold if it is defined.

Automatically Rerunning and Restarting Jobs

Batch jobs submitted with the - r option to the bsub command are automatically rerun
or restarted if the execution host becomes unavailable. (A host is considered
unavailable if both the LIM and sbat chd daemons are unreachable.) If the job has not
been checkpointed, the job is rerun from the beginning. If the job has been
checkpointed, either automatically or by the bchkpnt command, it is restarted from
the last checkpoint.

When a job is rerun or restarted, it is returned to the batch queue in which it was
executing, with the same options but a higher priority as the original batch job. The job
uses the same job ID number. It is executed when a suitable host is available, and an
email message is sent to the job submitter informing the user of the restart.

Submitting a Job for Automatic Migration

If you want to submit a rerunable job and have the system automatically migrate it to
another host when the job is suspended due to load, you must submit the job to a queue
or a host configured for automatic job migration.

If a job with a migration threshold has been suspended for more than the specified
number of minutes, LSF Batch attempts to migrate the job to another host. Only
checkpointable or rerunable jobs are considered for migration. To submit a rerunable
job, you must use the - r option to the bsub command.

If you want a job to be rerunable but you do not want the system to migrate it

automatically, submit the job to a queue or host that does not have a migration
threshold defined. You can still migrate the job manually with the bni g command.

174

11

Building Checkpointable Jobs

The LSF checkpoint library provides user-level checkpointing facilities on operating
systems that do not provide kernel checkpointing. It consists of three parts:

= the checkpoint library, | i bckpt . a

= the special checkpoint startup routine, ckpt _crt0. o

= the checkpoint linkers, ckpt _| d and ckpt _I d_f

Programs to be checkpointed must be linked with the checkpoint startup routine and
library. The checkpoint linkers are shell scripts that call the standard linkers on your

operating system with the correct options to link a checkpointable program.

The LSF user-level checkpoint library is based on the Condor system from the
University of Wisconsin.

The Checkpoint Library

The checkpoint library consists of a set of file system call stubs for file operations such
asopen(),cl ose(),and dup(), intercepted by the checkpoint library. It also
contains a checkpoint signal handler and routines used internally to implement
checkpointing.

The Checkpoint Startup Routine

The startup routine sets the checkpoint signal handler and initializes some data
structures. The data structures are used to record file accesses of the process and are
used during the restart to re-open files opened before the checkpoint and to restore the
current access positions in those files. The signal handler settings of the process are also
saved at the checkpoint time and restored when the process is restarted. All these
operations are transparent to applications.

Linking

Except on those systems with kernel checkpointing support, checkpointable programs
must be linked with the special checkpoint library and startup routine instead of the

LSF Batfch User’s Guide 175

11 Checkpointing and Migration

standard ones. LSF comes with replacement linkers for programs to be checkpointed.
The ckpt | dandckpt | d_f commands are shell scripts that take the same
parameters as the system linker, | d. The checkpoint linkers call | d with the correct
flags to link the user’s program with the checkpoint library | i bckpt . a and the special
startup routineckpt _crt 0. o.ckpt _| disforlinking C programsand ckpt | d_f is
for linking FORTRAN programs.

In most cases, users run the compiler for the language used, and the compiler then
invokes the linker on behalf of the user. Because of this, few users call the linker
directly. This section describes the steps involved in building a checkpointable
application.

Suppose you have a C program called pr 0og. ¢, and you normally create an executable,
pr og, as follows:

%cc -0 prog prog.c

To build a checkpointable program, however, you need to build the object file,
pr og. o, as follows:

%cc -c prog.c

Note
On SGI systems running IRIX version 5 or 6, use the - nonshar ed option.

Use the LSF linker script to build the executable:

%ckpt |d -0 prog prog.o

Note
ckpt _I d requires the static library | i bc. a on all platforms. In addition, on AIX
version 3.2 it requires | i bbsd. a; on Solaris version 2 it requires| i bnal | oc. a,
i bsocket.a,libnsl.aandlibintl.a.

Like C programs, FORTRAN source files must be compiled to object files and then

linked with the ckpt_Id_f command. To build a checkpointable version of progl from

the progl.f source file, proceed as follows:

%f77 -c progl.f

176

11

Note
On SGI systems running IRIX version 5 or 6, use the - nonshar ed option.

%ckpt _|d f -0 progl progl. o
Note
ckpt _I d_f requires the static library | i bc. a on all platforms. It requires

additional static libraries on each platform, as shown in Table 7 .

Table 7. Static Libraries for ckpt | d_f

Platform Static libraries (lib*. a)

ULTRIX 4 Uor, for, i, m ots, util

Digital Unix Futil, Ufor, for, m ots

HP-UX 9 F77, 177, U7, cl, isanmstub, utchem
HP-UX 10

AIX 3.2 bsd, m xIf

AlX 4.1 m x| f

IRIX 5 Fr7, 177, U777, isam m

IRIX 6, mips 2

IRIX 6, mips 3 ftn, m

IRIX 6, mips 4

SunOS 4 F77, ansi, m

Solaris 2 F77, intl, m malloc, nsl, socket, sunmath

In addition to the checkpoint library and startup routine, ckpt | dandckpt | d_f
may also link in a few other system-provided object files that are platform-dependent.
Normally, these files are installed in a standard directory by the operating system.
However, you may get an error if your system administrator set things up differently.
In this case, see the ckpt _| d(1) manual page for more information.

LSF Bafch User’s Guide 177

11 Checkpointing and Migration

Limitations

There are restrictions to the use of the currentimplementation of the checkpoint library
for user level checkpointing. These are:

178

The checkpointed process can only be restarted on hosts of the same architecture
and running the same operating system as the host on which the checkpoint was
created.

Only single process jobs can be checkpointed.

Processes with open pipes or sockets can be checkpointed but may not properly
restart as the pipes/sockets are not re-opened on restart.

If a process has st di n, st dout , or st derr as open pipes, all data in the pipes is
lost on restart.

The checkpointed process cannot be operating on a private stack when the
checkpoint happens.

The checkpointed process cannot use internal timers.
The checkpointed program must be statically linked.

SI GHUP is used internally to implement checkpointing. Do not use this signal in
programs to be checkpointed.

12. Customizing Batch Jobs for LSF

This chapter describes how to customize your batch jobs to take advantage of LSF and
LSF Batch features.

Environment Variables

When LSF Batch runs a batch job it sets several environment variables. Batch jobs can
use the values of these variables to control how they execute. The environment
variables set by LSF Batch are:

LSB_CHKPNT_DI R
This variable is set each time a checkpointed job is submitted. The value of the
variable is chkpnt di r /j obl d, a subdirectory of the checkpoint directory
that is specified when the job is submitted. The subdirectory is identified by
the job ID of the submitted job.

LSB JOBID
The LSF Batch job ID number.

LSB_JOBFI LENAVE
The full path name of the batch job file. Thisisa/ bi n/ sh script on UNIX
systems or a .BAT command script on Windows NT systems that invokes the
batch job.

LSB_HOSTS
The list of hosts selected by LSF Batch to run the batch job. If the job is run on
a single processor, the value of LSB_HOSTS is the name of the execution host.
For parallel jobs, the names of all execution hosts are listed separated by
spaces. The batch job file is run on the first host in the list.

LSF Batfch User’s Guide 179

12 Customizing Batch Jobs for LSF

LSB_QUEUE
The name of the batch queue from which the job was dispatched.

LSB_JOBNAME
The name of the batch job as specified by the - J job_name argument to bsub.
If this argument was not given, the job name is the actual batch command as
specified on the bsub command line.

LSB_RESTART
If this batch job was submitted with the - r option to bsub, has run previously,
and has been restarted because of a host failure, LSB_ RESTART is set to the
value Y. If this is not a restarted job LSB_RESTART is not set.

LSB_EXI T_PRE_ABORT
The value of this parameter can be used by a queue or job-level pre-execution
command so that the command can exit with this value, if it wants the job be
aborted instead of being requeued or executed.

LSB_EXI T_REQUEUE
This variable is a list of exit values defined in the queue’s
REQUEUE _EXI T_VALUE parameter. If this variable is defined, a job will be
requeued if it exits with one of these values. This variable is not set if the queue
does not have REQUEUE_EXI T_VALUE defined.

LSB_JOB_STARTER
This variable is defined if a job starter command is defined for the queue. See
‘Queue-Level Job Starters’ on page 129 of the LSF Batch Administrator’s Guide for
more information.

LSB_| NTERACTI VE
This variable is set to Y’ if the job is an interactive job. An interactive job is
submitted using the - | option to bsub. This variable is not defined if the job
is not interactive. See ‘Interactive Batch Job Support’ on page 145.

LS JOBPI D
The process ID of the job. This is always a shell script process that runs the
actual job.

LS _SUBCWD
This is the directory on the submission host where the job was submitted. By

180

12

default LSF Batch assumes a uniform user name and user ID space exists
among all the hosts in the cluster, that is, a job submitted by a given user will
run under the same user’s account on the execution host. For situations where
non-uniform user id/user name space exists, account mapping must be used
to determine the account used to run a job. See ‘User Controlled Account
Mapping’ on page 86.

LSB_JOBI NDEX
This variable is set only if the job is an element of a job array. The value of the
variable is the index of the job into the job array.

Parallel Jobs

Each parallel programming package has different requirements for specifying and
communicating with all the hosts used by a parallel job. LSF is not tailored to work
with a specific parallel programming package. Instead, LSF provides a generic
interface so that any parallel package can be supported by writing shell scripts or
wrapper programs. Example shell scripts are provided for running PVM, P4, MPI, and
POE programs as parallel batch jobs.

Getting the Host List

The hosts allocated for the parallel job are passed to the batch job in the LSB_HOSTS
environment variable. Some applications can take this list of hosts directly as a
command line parameter. For other applications you may need to process the host list.
The following example shows a/ bi n/ sh script that processes all the hosts in the host
list, including identifying the host where the job script is executing.

#!/bi n/ sh
Process the |ist of host nanes in LSB HOSTS

for host in $LSB HOSTS ; do

handl e_host $host
done

LSF Bafch User’s Guide 181

12 Customizing Batch Jobs for LSF

LSF comes with a few scripts for running parallel jobs under LSF Batch, such as

pvnj ob, poej ob, mpi j ob, p4j ob, etc. These scripts are installed in the LSF_BI NDI R
as defined in | sf. conf file. You can modify these scripts to support more parallel
packages.

Starting Parallel Tasks With | st ool s

For simple parallel jobs you can use the | st ool s commands to start parts of the job
on other hosts. Because the | st ool s commands handle signals transparently, LSF
Batch can suspend and resume all components of your job without additional
programming.

The simplest parallel job runs an identical copy of the executable on every host. The

| sgr un command takes a list of host names and runs the specified task on each host.
Thel sgrun - p option specifies that the task should be run in parallel on each host.
The example below submits a job that uses | sgr un to run myj ob on all the selected
batch hosts in parallel:

% bsub -n 10 'Isgrun -p -m "$LSB_HOSTS" myjob’
Job <3856> is subnmitted to default queue <nornal >.

For more complicated jobs, you can write a shell script that runs | sr un in the
background to start each component.

Using LSF Make to Run Parallel Batch Jobs

For parallel jobs that have a variety of different components to run, you can use LSF
Make. Create a makefile that lists all the components of your batch job and then submit
the LSF Make command to LSF Batch. The following example shows a bsub
command and Makefile for a simple parallel job.

% bsub -n 4 Ismake -f Parjob.makefile
Job <3858> is subnitted to default queue <nornal >.

% cat Parjob.makefile
Makefile to run exanpl e parallel job using Isbatch and LSF Make

all: partl part2 part3 part4

182

12

partl part2 part3: nyjob data. $@
part4: nyjob2 data.partl data.part2 data.part3

The batch job has four components. The first three components run the nyj ob
command on the data.partl, data.part2 and data.part3 files. The fourth component
runs the nyj ob2 command on all three data files. There are no dependencies between
the components, so LSF Make runs them in parallel.

Submitting PVM Jobs to LSF Batch

PVM is a parallel programming system distributed by Oak Ridge National
Laboratories. PVM programs are controlled by a file, the PVM hosts file, that contains
host names and other information. The pvnj ob shell script supplied with LSF can be
used to run PVM programs as parallel LSF Batch jobs. The pvnj ob script reads the LSF
Batch environment variables, sets up the PVM hosts file and then runs the PVM job. If
your PVM job needs special options in the hosts file, you can modify the pvnj ob script.

For example, if the command line to run your PVM job is:

%nyjob datal -o outl

the following command submits this job to LSF Batch to run on 10 hosts:

%bsub -n 10 pvmjob nyjob datal -o outl

Other parallel programming packages can be supported in the same way. The p4j ob

shell script runs jobs that use the P4 parallel programming library. Other packages can
be handled by creating similar scripts.

Submitting MPI Jobs to LSF Batch

The Message Passing Interface (MPI) is a portable library that supports parallel
programming. LSF supports MPICH, a joint implementation of MPI by Argonne
National Laboratory and Mississippi State University. This version supports both
TCP/IP and IBM’s Message Passing Library (MPL) communication protocols.

LSF provides an npi j ob shell script that you can use to submit MPI jobs to LSF Batch.
The npi j ob script writes the hosts allocated to the job by the LSF Batch system to a file

LSF Batfch User’s Guide 183

12 Customizing Batch Jobs for LSF

and supplies the file as an option to MPICH’s npi r un command. The syntax of the
npi j ob command is:

npi j ob option npirun program argunents
Here, option is one of the following:

-tcp Write the LSF Batch hosts to a PROCGROUP file, supply the - p4pg
procgroup_file option to the nmpi r un command, and use the TCP/IP protocol.
This is the default.

-npl Write the LSF Batch hosts to a MACHI NE file, supply the - machi nefil e
machine_file option to the npi r un command, and use the MPL on an SP-2
system.

The following examples show how to use npi j ob to submit MPI jobs to LSF Batch.
To submit a job requesting four hosts and using the default TCP/IP protocol, use:
%bsub -n 4 npijob npirun nyjob
Note
Before you can submit a job to a particular pool of IBM SP-2 nodes, an LSF
administrator must install the SP-2 ELIM. The SP-2 ELIM provides the pool number

and lock status of each node.

To submit the same job to run on four nodes in pool 1 on an IBM SP-2 system using
MPL, use:

%bsub -n 4 -R "pool == 1" npijob -npl npirun nyjob

To submit the same job to run on four nodes in pool 1 that are not locked (dedicated to
using the High Performance Switch) on an SP-2 system using MPL, use:

%bsub -n 4 -q npiq -R"pool == 1 & | ock == 0" npijob -npl npirun nyjob

Note
Before you can submit a job using the IBM SP-2 High Performance Switch in
dedicated mode, an LSF administrator must set up a queue for automatic requeue on
job failure. The job queue will automatically requeue a job that failed because an SP-2
node was locked after LSF Batch selected the node but before the job was dispatched.

184

12

Submitting POE Jobs to LSF Batch

The Parallel Operating Environment (POE) is an execution environment provided by
IBM on SP-2 systems to hide the differences between serial and parallel execution.

LSF provides a poej ob shell script that you can use to submit POE jobs to LSF Batch.
The poej ob script translates the hosts allocated to the job by the LSF Batch system into
an appropriate POE host list and sets up environment variables necessary to run the
job.

The poej ob script does not set the MP_EUI LI B and MP_EUI DEVI CE environment
variables, so you have to do this.

% setenv MP_EU LIB us
By default, M°_EUI DEVI CE is cssO. Or:

%setenv MM EULIBip
% setenv MP_EU DEM CE en0

The following are examples of how to submit POE jobs.

To submit a job requesting four SP-2 nodes configured for the poeq queue, use:
%bsub -n 4 -q poeq poej ob nyjob

By using LSF resource requirements, you can select appropriate nodes for your job.

To submit the same job requesting four SP-2 nodes from pool 2 configured for the poeq
queue, USE:

%bsub -n 4 -R "pool == 2" -q poeq poej ob nyjob

To submit the same job requesting four SP-2 nodes from pool 2 with at least 20
megabytes of swap space, use:

%bsub -n 4 -R"(pool == 2) & (swap > 20)" -q poeq poej ob nyj ob

LSF Bafch User’s Guide 185

12 Customizing Batch Jobs for LSF

To submit the same job requesting four SP-2 nodes from pool 2 that are not locked
(dedicated to using the High Performance Switch), use:

%bsub -n 4 -R"(pool == 2) & (lock == 0)" -q poeq poej ob nyj ob
Using a Job Starter for Parallel Jobs

The above examples use a script to run parallel jobs under LSF Batch. Alternatively,
your LSF administrator could configure the script into your queue as a job starter. With
a job starter configured at the queue, you can submit the above parallel jobs without
having to type the script name. See ‘Queue-Level Job Starters’ on page 129 of the LSF Batch
Administrator’s Guide for more information about job starters.

To see if your queue already has a job starter defined, runbqueues -1 command.

186

13.Using LSF MultiCluster

What is LSF MultiCluster?

Within a company or organization, each division, department, or site may have a
separately managed LSF cluster. Many organizations have realized that it is desirable
to allow their multitude of clusters to cooperate to reap the benefits of global load
sharing:

= You can access a diverse collection of computing resources and get better
performance as well as computing capabilities. Many machines that would
otherwise be idle can be used to process jobs. Multiple machines can be used to
process a single parallel job. All these lead to increased user productivity.

= The demands for computing resources fluctuate widely across departments and
over time. Partitioning the resources of an organization along user and
departmental boundaries forces each department to plan for computing resources
according to its maximum demand. Load sharing makes it possible for an
organization to plan computing resources globally based on total demand.
Resources can be added anywhere and made available to the entire organization.
Global policies for load sharing can be implemented. With efficient resource
sharing, the organization can realize increased computer usage in an economical
manner.

LSF MultiCluster enables a large organization to form multiple cooperating clusters of
computers so that load sharing happens not only within the clusters but also among
them. Itenables load sharing across large numbers of hosts, allows resource ownership
and autonomy to be enforced, non-shared user accounts and file systems to be
supported, and communication limitations among the clusters to be taken into
consideration in job scheduling.

LSF Batfch User’s Guide 187

13 Using LSF MultiCluster

Getting Remote Cluster Information

The commands| shost s, | sl oad, and | snon can accept a cluster name to allow you
to view the remote cluster. A list of clusters and associated information can be viewed

with the | scl ust er s command.

%I scl usters

CLUSTER NAME STATUS MASTER HOBT

clusl ok

clus2 ok

%I shost s

HOST_NAME type

host A NTX86 PENT200 10.0
host F HPPA

host B SUN1 SPARCSLC 3.0
host D HPPA

host E sa

host C SUNSQL SunSpar ¢

%I shosts clusl

HOST_NAME type

host D HPPA

host E A

host C SUNSQL SunSpar ¢

%I shosts clus2

HOST_NAME type
host A NTX86 PENT200 10.0
host F HPPA
host B SUNd1 SPARCSLC 3.0

%I sl oad clusl clus2

HOST_NAME status
host D ok
host C ok
host A ok
host B busy
host E | ockU
host F unavai |

188

PP OO
N W W
NOOOOL
oO~NAR A

nmodel cpuf ncpus maxnem naxswp server

58M
15M
463M
896M
56M

cpuf Nncpus nmaxnem naxswp server
463M 812M
896M
56M

cpuf Nncpus nmaxnem naxswp server

58M
15M

ut
19%

1%
35%

68%*5

30%

1692M Yes

RESAURCES

(NT)

(hpux cserver)
(sparc bsd)
(hpux cserver)
(irix cserver)
(sol aris cserver)

RESOURCES

(hpux cserver)
(irix cserver)
(sol aris cserver)

RESOURCES
(NT)

(hpux cserver)
(sparc bsd)

tnp swp nmem

3 146M 319M 252M

63M 44M 27M
40M 42M 13M
18M 20M 8M
10M 693M 399M

13

Running Batch Jobs across Clusters

A queue may be configured to send LSF Batch jobs to a queue in a remote cluster (see
‘LSF Batch Configuration’ on page 148 of the LSF Batch Administrator’s Guide). When you
submit a job to that local queue it will automatically get sent to the remote cluster:

The bcl ust er s command displays a list of local queues together with their
relationship with queues in remote clusters.

%bcl usters

LOCAL QBUE JB FLON REMOTE CLUSTER STATUS
testnt send testnt cl us2 ok
testnc recv - clus2 ok

The meanings of displayed fields are:

LOCAL_QUEUE
The name of the local queue that either receive jobs from queues in remote
clusters, or forward jobs to queues in remote clusters.

JOB_FLOW
The value can be either send or r ecv. If the value is send, then this line
describes a job flow from the local queue to a queue in a remote cluster. If the
value is r ecv, then this line describes a job flow from a remote cluster to the
local queue.

REMOTE
Queue name of a remote cluster that the local queue can send jobs to. This field
is always “-” if JOB_FLOWfield is “r ecv”.

CLUSTER
Remote cluster name.

STATUS
Connection status between the local queue and remote queue. If JOB_FLOW
field is send, then the possible values for STATUS field are “ok™, “r ej ect ”,
and “di sc”, otherwise the possible status are “ok” and “di sc”. When status
is “ok”, it indicates that both queues agree on the job flow. When status is
“di sc”, it means communications between the local and remote cluster has

LSF Batfch User’s Guide 189

13 Using LSF MultiCluster

not been established yet. This may either be because no jobs need to be
forwarded to the remote cluster yet, or the nbat chd’s of the two clusters have
not been able to get in touch with each other. The STATUS isr e] ect ifsend is
the job flow and the queue in the remote cluster is not configured to receive
jobs from the local queue.

In the above example, local queue t est nt can forward jobs in the local cluster to
t est nt queue of remote cluster clus2 and vice versa.

If there is no queue in your cluster that is configured for remote clusters, you will see
the following:

%bcl usters
No | ocal queue sending/receiving jobs fromrenote clusters

Use the - moption with a cluster name to the bqueues command to display the queues
in the remote cluster.

%bqueues -m cl us2

QUELE_NAME PR O STATUS MAX JU/UJLU/PJIUHNGBS PEND RN SUSP
fair 3300 Qoen: Acti ve 5 - - - 1 1 0 0
interactive 1055 Qpen: Acti ve - - - - 1 0 1 0
testnc 55 Qpen: Acti ve - - - - 5 2 2 1
priority 43 Qpen: Acti ve - - - - 0 0 0 0

Submit your job with the bsub command to the queue that is sending jobs to the
remote cluster.

%bsub -q testnt -J ntjob nyjob
Job <101> is subnitted to queue <testnt>.

The bj obs command will display the cluster name in the FROM_HOST and

EXEC HOST fields. The format of these fields is ‘host @I ust er * indicating which
cluster the job originated from or was forwarded to. To query the jobs running in
another cluster, use the - moption and specify a cluster name.

% bj obs
JOBI D USER STAT QEE FROMHCBT EBEXEC HCBT JGB NAME SUBM T _TIME
101 user? RN testnt host C host A@l us2 ntj ob t 19 19:41

190

13

%bj obs -m cl us2
JaBI D USER STAT QEE FROMHCST BXEC HOST JB NAME SUBMT_TIME
522 user?7 RN testnt host G@l us2 host A ntj ob ct 19 23: 09

Note that the submission time shown from the remote cluster is the time when the job
was forwarded to that cluster.

To view the hosts of another cluster you can use a cluster name in place of a host name
as the argument to the bhost s command.

%bhosts cl us2

HOST _NAME STATUS JL/U MAX NIGBS RN SSUSP USUSP RSV
host A ok - 10 1 1 0 0 0
host B ok - 10 2 1 0 0 1
host F unavai | - 3 1 1 0 0 0

Run bhi st command to see the history of your job, including information about job
forwarding to another cluster.

%bhist -1 101

Job Id <101>, Job Name <ntjob>, User <user7>, Project <default> GComrand
<nyj ob>

Sat (ot 19 19:41:14: Submitted fromhost <hostC to Queue <testnt> O <$HOME>

Sat ot 19 21:18:40: Paraneters are nodified to: Project <test> Queue <testnt>,
Job Nane <ntj ob>;

Mon Cct 19 23:09: 26: Forwarded job to cluster clusz;

Mon Cct 19 23:09: 26: D spat ched to <host A>;

Mon Cct 19 23:09:40: Running wth execution home </ hone/ user 7>, Execution OND <
/ hone/ user 7>, Execution P d <4873>;

Mon Gct 20 07:02: 53: Done successfully. The CPU tine used is 12981. 4 seconds;

Surmary of tine in seconds spent in various states by Vd Cct 20 07: 02: 53 1997

PEND PSUSP RN ususP SSUSP UNKWN TOTAL
5846 0 28399 0 0 0 34245

LSF Bafch User’s Guide 191

13 Using LSF MultiCluster

Running Interactive Jobs on Remote Clusters

The | srun command allows you to specify a cluster name instead of a host name.
When a cluster name is specified, a host is selected from the cluster. For example:

%I srun -mclus2 -R type==any host nane
host A

The - moption to the | sl ogi n command can be used to specify a cluster name. This
allows you to login to the best host in a remote cluster.

%Il slogin -v -mclus2
<<Renote login to hostF >>

The multicluster environment can be configured so that one cluster accepts interactive
jobs from the other cluster, but not vice versa. See ‘Running Interactive Jobs on Remote
Clusters’ on page 152 of the LSF Batch Administrator’s Guide. If the remote cluster will not
accept jobs from your cluster, you will get an error:

%I srun -mclus2 -R type==any host nane
I s_pl aceof hosts: Not enough host(s) currently eligible

User-Level Account Mapping Between Clusters

By default, LSF assumes a uniform user name space within a cluster and between
clusters. It is not uncommon for an organization to fail to satisfy this assumption.
Support for non-uniform user name spaces between clusters is provided for the
execution of batch jobs. The . | sf host s file used to support account mapping can be
used to specifying cluster names in place of host names.

For example, you have accounts on two clusters, clusl and clus2. In clusl, your user
name is ‘userl’ and in clus2 your user name is ‘ruser_1’. To run your jobs in either
cluster under the appropriate user name, you should setup your . | sf host s file as
follows:

192

13

On machines in cluster clusl:

%cat ~userl/.l|sfhosts
clus2 ruser_1

On machines in cluster clus2:

%cat ~ruser_1/.|sfhosts
clusl userl

For another example, you have the account ‘userl’ on cluster clusl and you want to use
the ‘Isfguest’ account when sending jobs to be run on cluster clus2. The . | sf host s files
should be setup as follows:

On machines in cluster clusi:

%cat ~userl/.l|sfhosts
clus2 | sfguest send

On machines in cluster clus2:

%cat ~lsfguest/.|sfhosts
clusl userl recv

The other features of the . | sf host s file also work in the multicluster environment.

See ‘User Controlled Account Mapping’ on page 86 for further details. Also see ‘Account
Mapping Between Clusters’ on page 155 of the LSF Batch Administrator’s Guide.

LSF Bafch User’s Guide 193

14.Interoperation with NQS

The Network Queuing System (NQS) is a UNIX batch queuing facility that allows
users to queue batch jobs to individual UNIX hosts from remote systems. Many users
have been using NQS for years.

This chapter describes how LSF works with existing NQS systems. If you are not going
to use LSF to interoperate with NQS, you do not need to read this chapter.

For user sites who have been using NQS for years, LSF provides a set of NQS
compatible commands for them to submit jobs to LSF using the NQS command syntax.
Examples of NQS compatibility commands in LSF include gsub, gst at , and qdel .

While itis desirable to run LSF on all hosts for transparent resource sharing, this is not
always possible. Some of the computing resources may be under separate
administrative control, or LSF may not currently be available for some of the hosts.

An example of this are sites that use Cray supercomputers. The supercomputer is often
not under the control of the workstation system administrators. Users on the
workstation cluster still want to run jobs on the Cray supercomputer. LSF allows users
to submit and control jobs on the Cray system using the same LSF interface as they use
for jobs on the local cluster.

LSF queues can be configured to forward jobs to remote NQS queues. Users can submit
jobs, send signals to jobs, check status of jobs, and delete jobs that are forwarded to the
remote NQS. Although running on an NQS server outside the LSF cluster, jobs are still
managed by LSF Batch in almost the same way as jobs running inside the LSF cluster.

LSF Batfch User’s Guide 195

14 Interoperation with NQS

Choosing an LSF Batch Queue

To submit jobs to hosts where NQS is running, you first need to find out which LSF
Batch queues are configured to forward jobs to NQS hosts. The bqueues -1 command
lists detailed information about all LSF Batch queues. Queues that have the ‘NQS
DESTI NATI ON QUEUES’ parameter defined will forward jobs to remote NQS hosts.
Below is an example of the output from the bqueues command that describes such a
queue:

% bqueues -1 cray
QEUE cray

-- For jobs to be sent to the Qray superconputer.

PARAMETERY STATI STI CS

PR O N CE STATUS MAX JU/UJLU/P NDGBS PEND RUN SSUSP USUSP RSV
30 15 (pen:Active 5 - - 1 0 1 0 0 0
SCHEDULI NG PARAMETERS

ris5s rim ri15m ut pg io Is it tnp sw nem
| oadSched - - - - - - - - - - -
loadStop - - - - - - - - - - -

USERS: all users
NGB DESTI NATI ON QUELES: ngs_queue@r ayhost . conpany. com

Note that ‘ngs_queue’ in the above output is the name of the NQS queue on the
specified host.

Submitting a Job from LSF to NQS

Submitting a job to run on an NQS host is the same as submitting an ordinary LSF job,
except that only those options that reflect common functionality of both LSF and NQS
can be used. This is because some NQS options do not make sense in the LSF context,
and many LSF options are not supported by NQS. Options must be specified as LSF

options; they are automatically translated when the job is forwarded to NQS. See the

196

14

LSF bsub(1) manual page and the NQS gqsub(1) manual page for more information on
the options supported by LSF and NQS.

Controlling Jobs Running on NQS

Job information from NQS is translated by LSF and reported by LSF Batch commands.
Any signals supported by both LSF and NQS may be sent to a specified job.

Forwarding of Output Files

The st dout and st der r output of the job is always transferred from the NQS host
back to the LSF cluster. If the bsub - o or - e options are not specified, the output of
the job is mailed to the user. If either of the - 0 or - e options are specified, the output
received from the NQS server is stored in the specified files.

LSF Bafch User’s Guide 197

A. Customizing x| sbat ch Menu
ltems

You can customize the menu items of x| sbat ch by specifying cust om zedMenu
resource in the X resource file. With this feature, you can:

= remove a pull-down menu from the menu bar

= remove a menu item from a pull-down menu

= remove a sub-pull-down menu from a pull-down menu
= remove a menu item from a sub-pull-down menu

= add anew item in the menu bar

= add anew item in a pull-down menu with an executable (the executable is run
when the menu item is chosen)

« add anew item in a sub-pull-down menu with an executable

< replace an item's command in the pull-down menu by a new executable

= replace an item's command in the sub-pull-down menu by a new executable
The format of the cust oni zedMenu resource is:

xlsbatch*customizedMenu:Al B1 C1 D1 A2 B2 C2 B2 .. An Bn Cn Dn’

where the resource value is a character string enclosed in double quotes, whose
components are separated by spaces.

LSF Batfch User’s Guide 199

A

Customizing x| sbat ch Menu ltems

From the beginning of the string, each four consecutive components constitute a group

that

customizes one menu item. Each component is either a character string or several

character strings encompassed by parentheses.

The

200

following define the valid syntax for a menu item group:

Remove a pull-down menu from the menu bar:

Ai : the pull-down menu name to be removed from the menu bar
Bi : 0 (zero)

Ci : 0 (zero)

Di : 0 (zero)

For example, remove the ‘Cal endar ’ pull-down menu from the menu bar:
x| sbat ch*cust onm zedMenu: " Cal endar 0 0 0"

Remove a menu item from a pull-down menu:

Ai : the pull-down menu name where some item will be removed
B/ : the menu item name to be removed

Ci : 0 (zero)

Di : 0 (zero)

For example, remove the ‘Rest art ...’ menu item from the ‘Job’ pull-down
menu:

x| sbat ch* cust om zedMenu: "Job Restart... 0 0"

Remove a sub-pull-down menu from a pull-down menu:

Ai : the pull-down menu where some sub-pull-down will be removed
Bi : the sub-pull-down menu name to be removed

Ci : 0 (zero)

Di : 0 (zero)

For example, remove the ‘Vi ew sub-pull-down menu from the ‘Job’ pull-down
menu:

x| sbat ch* cust om zedMenu: "Job View 0 0"

Remove a menu item from a sub-pull-down menu:
Ai : the pull-down menu where the sub-pull-down menu resides

Bi : the sub-pull-down menu name where some item will be removed
Ci : the menu item name to be removed
Di : 0 (zero)

For example, remove the ‘Chkpnt . . . * menu item from the ‘Mani pul at e’ sub-
pull-down menu of the ‘Job’ pull-down menu:

x| sbat ch*cust om zedMenu: " Job Mani pul ate Chkpnt... 0"

e Add a new item in the menu bar:
Ai : new menu name to be added
Bi : 0 (zero)
Ci : 0 (zero)
Di : same as Ai

For example, add the ‘O her s’ menu item in the menu bar:
x| sbat ch*cust om zedMenu: "G hers 0 0 G hers"

= Add anew item in a pull-down menu with an executable:
Ai : the pull-down menu name where the new item will be added
Bi : new menu item name to be added
Ci : 0 (zero)
Di : executable name which will be executed when this item is chosen

For example, add the ‘x| sadm n’ menu item in the ‘Fi | e’ pull-down menu which
runs x| sadm n with gray background:

x| sbat ch*cust om zedMenu: "Fil e xl sadmin O (xl sadmin -bg gray)"
= Add anew item in a sub-pull-down menu with an executable:

Ai : the pull-down menu name where the sub-pull-down menu resides

Bi : the sub-pull-down menu name where the new item will be added

Ci : new menu item name to be added

Di : executable name which will be executed when this item is chosen

For example, add the ‘My Job Vi ew menu item in the ‘Vi ew sub-pull-down
menu of the ‘Job’ pull-down menu, which runs the ny Vi ewexecutable:

x| sbat ch*cust om zedMenu: "Job Vi ew (My Job Vi ew) nyM ew'

LSF Bafch User’s Guide 201

A

Customizing x| sbat ch Menu ltems

Replace an item's command in the pull-down menu by a new executable:

Ai : the pull-down menu name where some item's command will be replaced
Bi : the menu item name whose command will be replaced

Ci:0

Di : executable name which will be executed when the item specified in Bi is
chosen

For example, replace the ‘Subni t. . . " menu item's command in the ‘Job’ pull-
down menu by a new nmyBsub executable:

x| sbat ch*cust om zedMenu: "Job Submit... O nyBsub"

Replace an item's command in the sub-pull-down menu by a new executable:

Ai : the pull-down menu name where the sub-pull-down menu resides

Bi : the sub-pull-down menu name where some item's command will be replaced
Ci : the menu item name whose command will be replaced

Di : executable name which will be executed when the item specified in Ci is
chosen

For example, replace the ‘Chkpnt . . . " menu item's command in the
‘Mani pul at e’ sub-pull-down menu by a new myChkpnt executable:

x| sbat ch*cust om zedMenu: " Job Mani pul ate Chkpnt... nyChkpnt"

x| sbat ch puts the jobIDs of those selected in the job list of the Main Window into a
group of UNIX environment variables:

JaBI DO JCBIDL ... JOBI X

Starting with JOBIDO, each variable contains at most 200 job IDs separated by spaces,
the variable group ends with a null variable.

202

B. Frame Arrays

Extending job array support, the frame array enables a subset of jobs in an array to be
specified as a manageable unit. It can be associated with its own attributes such as
resource requirements and job processing parameters. A frame array can be scheduled,
modified, and controlled just like a single job.

In this appendix, we assume that you are already familiar with job arrays in LSF.

Overview

The frame array provides a structure that allows all the frames that make up a scene to
be submitted using a single command. The frame array also provides the ability to
control and manipulate individual frames, frame sub-sequences, and the whole scene
(frame array). It groups frames (elements in a frame array) into user specified
manageable units (chunks) that are submitted to the LSF Batch system as individual
jobs. All jobs derived from a frame array share the same job ID and submission
parameters.

Frames in a frame array are referenced using an array index, which supports negative
indices. The dimension and structure of a frame array are defined when the array is
submitted. Frames are scheduled to run independently of each other using the various
policies that apply to the submitting user.

Frame arrays are especially useful for the Computer Graphics Industry (CGI) where
the process of rendering a sequence of individual frames to build a scene is an
everyday occurrence. The frames that make up a scene represent independent entities.
They can be processed separately, therefore using the frame array is a natural approach
to improving rendering throughput.

LSF Batfch User’s Guide 203

B Frame Arrays

The default size of a frame array is 1000 jobs, the maximum size is 2046 jobs. The
MAX_JOB_ARRAY_SI ZE parameter specified in the | sb. par ans file sets the size of a
frame array. The frame array and the individual frames are modified and controlled
using the following new commands:

gbsub
submits a frame array to the LSF Batch system

gbj obs
displays the frame status for frame array jobs

gbst op
suspends a frame array or individual frames

gbr esune
resumes a suspended frame array or individual frames

gbki I |
sends a signal to a frame array or individual frames

Distribution

The files that allow LSF to use frame arrays are available from Platform. Installation
instructions are included.

Frame Array Concepts

frame
The basic element that makes up a frame array, hence the name. As the name

implies, a frame is one picture of a series on a length of film. A number of
frames make up a scene.

204

job
In the context of frame arrays, a job is the smallest object of control within a
frame array. Jobs are defined by the chunk parameter.

chunk
The number of frames that are to be grouped together to form a job.

frame array
The structure used to define the dimension (humber of frames) and structure

(chunks) of the frames that make up the scene. The frame array is the structure
that is submitted to the LSF Batch system.

Submitting Frame Arrays

A frame array is created at the time of submission. The gbsub command inherits all
the options of the bsub command and extends the - J option to specify the elements of
the array. Each element of the array corresponds to a single frame and is identified by
an index which must be a unique integer. The index values in an array do not have to
be consecutive, and a combination of individual index values and index ranges are
used to define a frame array.

Syntax

% gbsub -J "franeArrayNane[indexList, . . .]" command

Note
The frame array specification must be enclosed in double quotes.

The square brackets,[], aroundi ndexLi st must be entered exactly as shown.

Note: The frame array syntax breaks the convention of using square brackets to
indicate optional items

franmeArrayNane

Specifies a user defined string used to name the frame array. Any combination
of the following characters make up a valid frameArrayName:

LSF Bafch User’s Guide 205

B Frame Arrays

a-z | AZ] 0-9] . | - |

i ndexLi st

start

end

step

chunk

Note

206

Specifies the dimension, structure, and indices of the frame array in the
following format:

i ndexList = start [- end [x step [: chunk]]]

A unique integer specifying the start of a range of frame array indices. If a start
value is specified without an end value, start specifies an individual job of the
frame array.

A unique integer specifying the end of a range of frame array indices. The
start-end construct specifies a range of frames.

An integer specifying the value to increment the index values for the
respective range of frames. If omitted, the default value is 1.

A single integer specifying the number of frames to group (chunk) into a job.
If omitted, default value is 1.

A job is the smallest object of control within the LSF Batch system, when chunk
size is larger than 1 the individual frames that make up the job are controlled
as asingle job. When the number of frames cannot be evenly divided by chunk
size, the last job (chunk) will contain fewer frames.

The following formulas help to explain the relationship between frames, steps,
and chunks.

In these examples, if the number of frames or jobs turns out to be a fraction, it should
always be rounded up to the next integer. For example, 9/3 would be 3, but 10/3 would
be 4.

(end - start) + 1
Nunber of Frames = -----------------
step

Nurber of Franes
Nunber of Jobs = -----cmmamaao-.
chunk

Examples

[1] specifies 1 frame with the index of 1 submitted as 1 job.
[1, 2, 3, 4, 5] specifies 5 frames with indices 1 - 5 submitted as 5 jobs .

[1-5] specifies 5 frames with indices 1 - 5 submitted as 5 jobs. Step and chunk values
are default (i.e., 1). Index values are determined by starting at 1 and adding 1, not
incrementing past the end value.

[1-10x2] specifies 5 frames with indices 1, 3, 5, 7, and 9 submitted as 5 jobs. Step
value is 2, chunk value is default (i.e., 1). Index values are determined by starting
at 1 and adding 2, not incrementing past the end value.

[1-10x2:3] specifies a frame array of 5 frames with indices 1, 3, 5, 7, and 9 submitted
as 2 jobs. Step value is 2 and chunk value is 3. Index values are determined by
starting at 1 and adding 2. Jobs are determined by putting frames in groups of 3.
When chunk size does not evenly divide frame size the remainder frames (i.e., <
chunk) make up the last job.

[-99-0, 1-100] specifies a frame array with indices -99 to 0 and 1 to 100 submitted as
199 jobs. Step and chunk values are default (i.e., 1).

[-99-0x10:5, 1-100x5:10] specifies the following frame array:
= Step value 10, chunk size 5, with indices -99, -89, -79, -69, -59, -49, -39, -29,
-19, and -9 submitted as 2 jobs:
- -99,-89,-79, -69, -59

- -49,-39,-29,-19, -9

= Step value 5, chunk size 10, with indices 1, 6, 11, 16, 21, 26, 31, 36, 41, 46,
51, 56, 61, 66, 71, 76, 81, 86, 91, and 96 submitted as 2 jobs:

- 1,6,11, 16, 21, 26, 31, 36, 41, 46
= 51,56, 61,66, 71, 76, 81, 86, 91, 96

LSF Bafch User’s Guide 207

B Frame Arrays

Tracking Frame Arrays

The gbj obs command is used to track frame arrays. Itinherits all the options of bj obs
command with the addition of the - Jn " f r ameArrayNane" and - Js
"frameArrayNanme" options. The - Jn option displays frame jobs (chunks) arranged
by the frame index and job state. The - Js option displays the status of all jobs in a
frame array.

Examples
A frame array is submitted:

% gbsub -J "nyFrange[-100--50x10: 3, - 40-- 20x10: 3, - 10, 0, 100- 10x- 10] " command

The command gbj obs -Jn "nmyFrame" produces output that looks like:

JOBA D USER FRAMES STAT
101 userl my Fr ame[- 100- - 50x10: 3] RUN
101 userl my Fr ame[- 40- - 20x10: 3] PEND
101 userl mt Frame[- 10] PEND
101 userl my Fr ame[0] PEND
101 userl my Fr ame[100- 10x- 10] PSUSP

The command gbj obs -Js "nyFrane" produces output that looks like:

JOBG D FRAMES PEND RUN DONE EXI T SUSP OTH

101 myFr ane[- 100- - 20x10: 3, - 10, 0, 100- 10x- 10] 3 2 10

Controlling Frame Arrays

The gbst op, gbr esun®e, and gbki | | commands are used to control frame arrays.
These commands inherit all the options of the bst op, br esune and bki | | commands
respectively, except for - R, - d, and - a, which are not supported. For frame arrays the
-J "franeArrayNane[i ndexLi st]" option operates at the job level, which is

208

defined by the chunk size at submission time. These commands echo the frames on
which they will be operating.

Syntax

gbstop [options] -J "frameArrayNane[indexList, . . .]" command
gbresune [options] -J "frameArrayNane[indexList, . . .]" command
gbkill [options] -J "frameArrayNane[indexList, . . .]" command

-J "franmeArrayNane[i ndexList]"
The syntax for frameArrayName[indexList] is the same used with the gbsub
command. The asterisk, *, wildcard is supported for frameArrayName. Care
must be used with the wildcard, as it will cause the command to operate all
arrays whose names match the pattern. Chunk size is ignored for these
commands. If only frameArrayName is specified (i.e., without an indexList)
the command will operate on all jobs whose name matches frameArrayName.

If a mistake is made when issuing a control (i.e., indexing a frame that does not exist)
the following error will be reported:

| sb_openj obi nfo: No matching job found

Examples
A frame array is submitted using the following specification:
% gbsub -J "nyFraneArray[1-10x2: 3] " comand

[1-10x2:3] specifies a frame array of 5 frames with indices 1, 3, 5, 7, and 9 submitted as
2 jobs. Step value is 2 and chunk value is 3. Index values are determined by starting at
1and adding 2. Jobs are determined by putting frames in groups of 3. When chunk size
does not evenly divide frame size the remainder frames (i.e., < chunk) make up the last
job.

gbkill -J "nmyFranmeArray[10]" conmand
specifies the frame at index 10 is to be Kkilled. If nyFr aneAr r ay[10] does not
exist, the following error message is issued in response: | sb_openj obi nf o:
No matching job found.

LSF Bafch User’s Guide 209

B Frame Arrays

gbstop -J "nyFraneArray[1] " conmand
specifies the job at index 1 is to be stopped. Since that frame belongs to a job
(chunk) whose size is larger than 1, all frames in the job (1 and 3) are stopped.

gbresune -J "nyFrameArray[3] " conmand

specifies the frame at index 3 is to be started. Since that frame belongs to a job
(chunk) whose size is larger than 1, all frames in the job (1 and 3) are started.

210

C. Using LSF with Alias Renderer

LSF is integrated with Alias | Wavefront’s product Alias Renderer. This allows frame
array jobs to take advantage of the checkpoint and migration features provided by LSF
Batch, and eliminates the need to reprocess completed frames when an interrupted job
is migrated or restarted.

In this appendix, we assume that you are already familiar with frame arrays and job
starters in LSF.

Overview

When processing a set of frames, it is not convenient to submit each frame as a separate
job. In LSF, a frame array is divided into a specified number of related jobs, and they

can all be controlled by a single frame array command. Each job may contain several

frames.

This is still not the most efficient way to process the data. For example, if a job
consisting of five frames is interrupted while processing the fourth frame, the entire job
is restarted elsewhere. Ideally, LSF would be aware that three frames have already
been completed, and only the remaining fourth and fifth frames would be processed
when a job is restarted. This is possible using the Alias | Wavefront software and
special LSF commands.

LSF provides wrappers used to append frame parameters (start, end, and step) to the
normal Alias Renderer commands. The Alias | Wavefront frame rendering tools call a
specified callback function to export data when each frame is done. LSF provides that
function, and updates a file that keeps track of the status of each frame in a job. LSF
also provides a queue-level job starter that reads information in this status file before
starting a job, so if a job is restarted, only the incomplete frames are submitted for
processing.

LSF Batfch User’s Guide 211

C Using LSF with Alias Renderer

This feature is called checkpointing. You can use a special LSF command to view the
status of frames in checkpointed frame arrays.

Distribution

The distributed rendering control software that you can use with Alias | Wavefront’s
software is available from Platform. Installation instructions are included.

Installing the queue-level job starter

For frame array checkpointing to work, the frame array must be submitted to a queue
that uses the special job starter provided by LSF. Include the following line in the
queue definition (in the | sb. queues file):

JOB_STARTER = gbstarter

Submitting Checkpointed Frame Arrays

Submit the frame array as usual, but include the parameters required for
checkpointing. The syntax for the gbsub command is:

gbsub [-k chkpntDir]
[-q gbstarter_queue]
-J “frameArrayName [IndexList,...]"
[any other regular options to the bsub command]
gbrenderer | gbraytracer | gbpowercaster | gbpowertracer
[-f gbcallback]
[any other regular options to the Renderer command]

The frame array checkpointing feature requires all the following parameters:

212

-k chkpntDi r
Regular option to gbsub command, specifies the name of the checkpoint
directory that will contain the status files which keep track of completed
frames in each job. This directory must already exist; LSF will not create it for
you.

-q gbstarter_queue
Regular option to gbsub command, specifies the name of a queue that uses
gbst art er as the job starter.

-J “frameArrayName [IndexList,...]"
Regular parameter of the gbsub command, specifies the name and structure
of the frame array.

gb* Renderer commands
Special commands replace the regular parameter of the gbsub command.
These wrappers must be used to replace the Alias Renderer commands
renderer ,raytracer ,powercaster ,and powertracer .The wrappers
accept all the command options accepted by the native commands, and can be
used in scripts just like the native commands.

-f gbcallback
Special option to the gb* Renderer command, specifies the LSF function
gbcallback that is called by the Alias Renderer application each time a
frame is finished. This function automatically updates the status files in the
specified checkpoint directory.

Example

You already have a directory called MyDir and the LSF job starter gbstarter s
configured on a queue called MyQueue If you would normally submit your frame
array using the Alias Renderer powertracer command, type the following command
to enable checkpointing:

gbsub -k MyDir -q MyQueue -J “MyArray [1-10x2:3]” gbpowertracer -f gbcallback

LSF Bafch User’s Guide 213

C Using LSF with Alias Renderer

Tracking Checkpointed Frame Arrays

The regular gbj obs command is used with a special switch, - Jf , to show the status
of frames in checkpointed frame arrays. If you have not submitted any checkpointed
frame arrays, an error message will appear.

Example
The command
gbjobs -u all -Jf "nyFranme"

produces output that looks like:

JOBI D USER FRAMVES EXEC HOST FRAMES DONE FRAMES TO GO
5 usrl nmyj obl[1- 10] Host A 1-3 4-10
6 usrl nyj ob2[17- 20] Host B 17-20 none
9 usr2 seql[-1-12] Host C none -1-12
15 usr2 seq6[100-200] Host D 100- 138 139- 200
25 usr3 mov[500- 1000] Host E 500- 813 814-1000

214

D. Using LSF with FLUENT

LSF is integrated with products from Fluent Inc., allowing FLUENT jobs to take
advantage of the checkpoint and migration features provided by LSF Batch. This
increases the efficiency of the software and means the data is processed faster.

In this appendix, we assume that you are already familiar with using FLUENT
software and checkpointing jobs in LSF.

Overview

For checkpointing jobs, LSF uses two executable files called echkpnt and erestart.
LSF provides special versions of echkpnt and er est art that will allow
checkpointing with FLUENT software.

When you submit a checkpointing job, you have to specify a checkpoint directory.
Before the job starts running, LSF sets the environment variable LSB_CHKPNT_DI R
The value of LSB_CHKPNT _DI Ris a subdirectory of the checkpoint directory specified
in the command line. This subdirectory is identified by the job ID and will only contain
files relating to the submitted job.

When you checkpoint the FLUENT job, LSF creates a checkpoint trigger file (.check)
in the job subdirectory, which will cause the FLUENT software to checkpoint and
continue running. A special option is used to create a different trigger file (.exi t)
which will cause the FLUENT software to checkpoint and exit the job.

The FLUENT software uses the LSB_CHKPNT _DI Renvironment variable to determine
the location of checkpoint trigger files. It checks the job subdirectory periodically while
running the job. The FLUENT software does not do any checkpointing unless it finds
the LSF trigger file in the job subdirectory. The FLUENT software removes the trigger
file after checkpointing the job.

LSF Batfch User’s Guide 215

D Using LSF with FLUENT

If ajob is restarted, LSF will attempt to restart the job with "-r" option appended to the
original FLUENT command. FLUENT software will use the checkpointed data and
case files to restart the process from that checkpoint point, rather than repeating the
entire process.

Each time a job is restarted, it is assigned a new job ID, and a new job subdirectory is
created in the checkpoint directory. Files in the checkpoint directory are never deleted
by LSF, but you may choose to remove old files once the FLUENT job is finished and
the job history is no longer required.

Distribution

The files that you can use with FLUENT software are available from Platform.
Installation instructions are included.

Configuring the Checkpointing Executable Files

LSF provides special versions of echkpnt and er est art that will allow
checkpointing with FLUENT software. You must make sure LSF uses these files
instead of the standard versions. There are two ways to do this:

« Put them in the normal location, so you overwrite the standard LSF files with the
special FLUENT versions.

= Leave the standard LSF files in the default location and install the FLUENT
versions in a different directory. Then modify the LSF_ECHKPNTDI Renvironment
variable to point to the FLUENT versions.

Note
The LSF_ECHKPNTDI Renvironment variable, defined in the | sf. conf file,
specifies the location of the echkpnt and er est art files that LSF will use. If this
variable is not defined, LSF uses the files in the default location, identified by the
environment variable LSF_SERVERDI R.

216

Submitting the FLUENT Job

Submit the job as usual, but include the parameters required for checkpointing. The
syntax for the bsub command is:

bsub [-k chkpnt Dir]
[any other regular options to the bsub command]
FLUENT conmand
[any other regular options to the FLUENT conmand]
- | sf

The checkpointing feature for FLUENT jobs requires all the following parameters:

-k chkpntDi r
Regular option to bsub command, specifies the name of the checkpoint
directory.

FLUENT command
The regular command used with FLUENT software.

- | sf
Special option to the FLUENT command. Specifies that the FLUENT software
is running under LSF, and causes the FLUENT software to check for trigger
files in the checkpoint directory if the environment variable
LSB_CHKPNT_DI Ris set.

Note

This option to the FLUENT command should be documented with the FLUENT
software. At the time of printing, the option was -| sf , but this may change.

Checkpointing the FLUENT job

Checkpoint the FLUENT job manually. The syntax for the bchkpnt command is:

bchkpnt [regul ar options to bchkpnt] [-Kk] []jobld]

LSF Batfch User’s Guide 217

D Using LSF with FLUENT

The following parameters are used with FLUENT:

-k
Regular option to bchkpnt command, specifies checkpoint and exit. The job
will be killed immediately after being checkpointed. When the job is restarted,
it doesn’t have to repeat any operations.

jobld

Job ID of the FLUENT job, should be used to specify which job to checkpoint.

Restarting the FLUENT job

Restart the FLUENT job as usual. The syntax for the br est art command is:
brestart [regular options to brestart] chkpntDir [jobld]
The following parameters are used with FLUENT:

chkpnt Di r
Specifies the checkpoint directory, where the job subdirectory is located.

jobld
Job ID of the FLUENT job, specifies which job to restart. At this point, the
restarted job is assigned a new job ID, and the new job ID starts being used for
checkpointing. The job ID changes each time the job is restarted.

218

Index

A
access permissions 139
address (Platform) XV
administrator, see LSF administrator
AFS (Andrew File System) 139
Alias | Wavefront software 211
aliases for resource names. 47
API (Application Programming
Interface) 7
LSBLIB (LSF Batch LIBrary)...... 11
LSLIB (Load Sharing LIBrary). 6
application programming............ 6
arrays
framearrays.................. 203
jobarrays 106
atsign(@..........coiiii 151
automatic queue selection........... 75
available memory.................. 41
B
bacct L 113
batchjobs.......................... 4
accessingfiles................. 101
allocating processors. 103
changing execution order, see bt op,
bbot
checking output, see bpeek
checkpointing............. 113, 169
configuration files, | sb. par ans .85
displaying status, see bj obs
e-mail aboutjobs........... 90, 113
environment, see environment
variables
LSF Bafch User’'s Guide

exclusive 63, 67,112
execution history, see bhi st
input and output, see bsub, bpeek

interactive 145
inter-job dependencies 98
introduction 55
killing, see bki | |
migration, see bm g
min/max processors 104
moving to other queues, See
bswi t ch
pending and suspended 56, 120
pre-execution commands 97
projects. 113
rerunnable................... 113
rerunning and restarting. 174
resource requirements. 91
resource reservation 50
resource usage limits........... 95
restarting from checkpoint, see
brestart
scheduling.................... 64
selectinghosts. 93
signalling, see bki I | , bst op,
bresumne
start and termination time 103
submitting, see bsub
batchqueues 67

batch queues, see queues
batch server hosts
displaying, see bhost s

bbot 131
bchkpnt 170
bclusters 189
bg, see job control

bhist 123,191

219

bhosts 20,79, 127,191
bjobs.................... 22,119, 190
bkill ... 128
bmgroup ... 81
bmig....... ... 173
brmod......... 132
boolean resources. 43
bparans 85
bpeek............, 88, 126
bqueues 21, 67,127,190
brestart 171
bresume 128
bstop............ . L 128
bsub..................... 20, 169, 190
inputandoutput. 90
bswitch........................ 131
btop........... ... 131
bugroup 81
BUI LTI N, see load indices
busers 78
busy hoststatus................... 39
C
C programming library 6
checkpoint directory 169

checkpoint library, see | i bckpt . a
checkpoint period, see checkpointing,
submitting jobs

checkpointing 113
background 166
echkpnt 167
erestart 168
framearrays.................. 211
limitations. 178

linking programs, see ckpt | d
manual, see bchkpnt

restarting jobs, see br est art
submitting jobs 169
with Alias| Wavefront software . 211

220

with Fluent software 215
chsh 150
chunks (frame arrays)............. 203
ckpt_crt0.0..........ooiiiia. 175
ckpt _Id............ 175
ckpt _Id_f L. 175
clusters ... 4

commands, pre-execution, see pre-
execution commands

Condorsystem................... 175
connect 154
contacting Platform Computing. XV
CPUfactor 27,42
CPUtimelimit.................... 77
CPU utilisation 40
cpuf staticresource 27,42
D

daemons

LIM (Load Information Manager). 6

RES (Remote Execution Server)... 6
dedicated resources 45
disks

available space, see t np load index,

maxt np static resource
170 rate, see i o load index
number installed, see ndi sks static

resource
dispatch windows. 66
displaying hosts, see bhost s, | shost s

documentation. Xiv
DONE batch jobstate 56

DYNAM C, see load indices

E
echkpnt 167
effective run queue length.......... 40

electronic mail, see batch jobs, e-mail

about jobs
ELIM (External Load Information
Manager).................. 37
environment variables
LS JOBPID.......... 179, 180, 181
LS SUBCWDcovvvnnn 180
LSB CHKPNT_DIR........ 179, 215
LSB DEFAULTQUEUE........... 76
LSB_EXI T_PRE_ABORT 180
LSB EXIT_REQUEUE.......... 180
LSB HOSTS 103, 179
LSB I NTERACTIVE........... 180
LSB JOBFILENAME 179
LSB JOBID.............. 103, 179
LSB JOBINDEX............... 181
LSB JOBNAME. 180
LSB QUEUE 180
LSB RESTART 180
LSB_RESTART PG D.......... 169
LSB_ RESTART PID........... 169
LSF_ ECHKPNTDIR 167
LSF_JOB STARTER....... 144, 180
MP_EUDEVICE............... 185
MP_EULIB.................. 185
erestart 168
/etc/shellsfile................ 150
exclusivejobs 112
exclusive jobs, see batch jobs, exclusive
execution priority 42
EXI T batchjobstate................ 57
external load index................. 37
F
fax numbers (Platform) XV
f g, see job control
fileaccess. ... 139

files, accessing from batch jobs, see batch
jobs, accessing files

LSF Bafch User’s Guide

finger L 155
Fluentsoftware 215
FORTRAN 176
framearrays..................... 203
G
ghjobs 204
gbkill 204
gbresume 204
ghstop.......... i 204
gbhsub............... 204
guides i Xiv
H
help ... XiV, Xv
hnane static resources 42
home directory................... 102
hostgroups....................... 81
host information, displaying, see
| shosts
hostmodels 27
displaying, seel si nfo
host redirection 151
host selection, see resource requirements
hoststatus. 17, 38
busy........... ... L 39
lockU 39, 63, 112
loCckW.......t 39
OK oo 39
unavail 39
unlicensed 39
hosttypes........................ 42
displaying, seel si nfo
hosts file, PVM. 183
221

Index

|
idletime.......................... 40
integration
Alias | Wavefront software. 211
Fluent software 215
interactivejobs 4
resource reservation............ 51
| NTERVAL, see load indices
ioloadindex 41
itloadindex 40
J
jobarrays........................ 106
jobcontrol 152
job dependencies 98
job ladder, see job dependencies
job migration..................... 174
automatic migration........... 174
migration threshold 174

job queues, see queues
job spanning, see resource requirements

jobstarter........................ 144

L

libckpt.a...................... 175

LIM (Load Information Manager) 6

loadaverage 39

load displaying, see | sl oad

load index
o 41
N S 40
IS 40
MM .. e 41
PO 40
rasm............o i 39
r15s ... 39

222

FAM. 39
SV e e 41
tnMp . 40
L 40
load indices
built-in.................... 27,37
dynamic...................... 27
external 37
updateinterval 26
load monitoring................... 29
load sharing cluster, see clusters
load sharingserver................. 6
load thresholds 29
| oadSched, see scheduling thresholds
localmodeinlstcsh 155
locality, see resource requirements
| ockUhoststatus 39, 63, 112
| ockWhoststatus 39
loginsessions..................... 40
loginshell 150
Isloadindex..................... 40
LS JOBPI Denvironment variable. . 179,
180, 181

LS SUBCWDenvironment variable. . 180
LSB_CHKPNT_DI Renvironment

variable.............. 179, 215
LSB_DEFAULTQUEUE environment
variable................... 76
LSB_EXI T_PRE_ABCRT environment
variable. 180
LSB_EXI T_REQUEUE environment
variable. 180
LSB_HOSTS environment variable. . 103,
179
LSB | NTERACTI VE environment
variable.................. 180
LSB_JOBFI LENAME environment
variable.................. 179
LSB_JOBI Denvironment variable. . 103,
179

LSB_JOBI NDEX environment variable. .
181

LSB_JOBNAME environment variable 180

LSB_QUEUE environment variable . . 180

LSB_RESTART environment variable 180

LSB_RESTART_Pd Denvironment

variable 169
LSB_RESTART_PI Denvironment
variable 169
LSBLIB (LSF Batch LIBrary) 11
Isclusters..................... 188
LSF administrator. 4
LSFbasesystem 6
LSF Enterprise Edition............. Xiv
LSF Make ..., 19
LSF master server, see master LIM
LSF Standard Edition.............. Xiv
LSF Suite documentation Xiv
LSF Suite products................ xiii
Isf.taskfile..................... 53
LSF_ECHKPNTDI Renvironment
variable 167
LSF_JOB_STARTERenvironment
variable 144, 180
LSF_SERVERDI Rdirectory. 167
.Isfhostsfile................ 86, 192
Isftask 53
Isgrun 141
Ishosts 16, 27, 188
Isid.......oiiiii 25
Isinfo 14, 26, 37, 41, 46
LSLIB (Load Sharing LIBrary) 6
Isload 17,29, 41, 188
-Eoption ... 40
-Noption 40
Islogin.................... 142,192
Ismake 159, 182
min/max processors. 163
running asa batch job.......... 162
Isnode ... 153

LSF Bafch User’s Guide

lsmon..............o . 30, 188
Isplace.............cooiiiitt. 142
ISrep. oo 102, 140
Isrtasks 53
lsrun................... 18, 140, 192
Istesh.....ooo . 19, 149
local and remote mode 155
M
mailing address (Platform) XV
manager, see LSF administrator
masterLIM........................ 6
MAX_JOB_ARRAY_SIZE (in frame
arrays). . ovvvi 204
maxmemstatic resource.......... 27,42
maxswp static resource.......... 27,42
maxt np static resource.......... 28, 42
nbatchd......................... 55
memload index. 41
memory

physical, see memload index, maxmem
static resource
swap space, see swp load index,
maxswp static resource
migration, see bm g

nodel staticresource........... 27,42

monitoringload................... 29

MP_EUI DEVI CE environment variable .
185

MP_EUI LI Benvironment variable. . 185
MPI (Message Passing Interface) 104, 183
MPICH 183
npijob..................... 104, 184
MPL (Message Passing Library).... 183
multiprocessor hosts

also see ncpus static resource

223

Index

N
name spaces, hon-uniform 86
ncpus static resource. 27,42
ndi sks static resource 28,42
NFS (Network File System) 139
non-uniform name spaces........... 86
normalized run queue length........ 40
NQS (Network Queueing System). .. 195
DESTI NATI ON QUEUES 196
SEIVEI. .ot 195
@)
ok hoststatus 39
online documentation XV

order string, see resource requirements

P
P4 104, 183
pdjob..........., 104, 183
pagingrate........................ 40
paralleljobs...................... 181

also see | smake

parallel programming
Argonne National Laboratory. . .183
Mississippi State University183
Oak Ridge National Laboratories183

P4, . 183

PVM. 183
PATHenvironment variable 149
PEND batch jobstate................ 56
pendingjobs 120
pgloadindex 40
phone numbers (Platform) XV

Platform Computing Corporation. .. .xv
POE (Parallel Operating Environment) .

224

185
poejob........... L. 185
preemptive and preemptable scheduling

62
pre-execution commands........... 97
process migration, see bni g
PSUSP batch job state 57,129
PVM.......... 104, 183
pvnmjob..................... 104, 183
Q
QUEUES. . ottt e 4

batchqueues.................. 67
choosing...................... 77
displaying, see bqueues

exclusive scheduling 63
parameters

RES REQ 65

RESUME_COND. 66

STOP_COND............... 65

preemptable 62
R
ri5mloadindex 39
ri5sloadindex 39
rimloadindex.................... 39
o3 o 102
re-initializing job environment. 111
loginshell 112
remote execution priority........... 28
remote jobs
execution priority.............. 42
running, see | srun, | sgrun
remote modeinlstcsh 155
remote task list, see task lists
Renderer software. 211
rerunning batch jobs.......... 113,174

RES (Remote Execution Server) 6

resource limits. 77
specifying for batch jobs......... 95

resource name aliases 47

resource requirements
batchjobs 91
format........................ 46
orderinghosts 46, 49
parallel job locality 47,51
RES REQparameter............ 65
resource reservation 50
resourceusage.............. 47,50
RESUME_COND parameter 66
selectinghosts 46, 47
specifying..................... 54
STOP_COND parameter.......... 65

resource usage, see resource

requirements

FESOUICES . ..ottt e 3
boolean 43,45
dedicated 45

displaying, see | si nfo
listing for a host, see | shost s

static i 42
resuming jobs, see br esune
rexpri static resource 28, 42
rlogin 142
alsoseel sl ogi n
RUNbatch jobstate............. 56, 129
run queue
effective. 40
normalized.................... 40
runwindows. 29, 66

rusage, see resource requirements

S

sbatchd, 55
scheduling
batchjobs 64

LSF Bafch User’s Guide

host partition 60

migration of rerunable jobs 173
preemptive scheduling 62
scheduling thresholds. 64
selection string, see resource
requirements
servershell 154
server static resource.......... 28, 42
shell script
mpijob 184
pdjob 183
poejob 185
pvnmjob 183
shell selection for jobs............. 116
defaultshell.................. 117
span, see resource requirements
SSUSP batch job state.......... 57,129
start time for batch jobs 103
static resource
hname 42
staticresources. 41, 42
cpuf ... 42
MaXMEeM. ... 42
MBXSWD « .\ oo 42
mextnpcoiii 42
model 42
NCPUS .o vii e 42
ndisks 42
(= q o 42
SEIrVer ... 42
type. ..o 42
status.......... .. 38
also see host status
subdirectories, | smake and 161
SUPPOIt ..o XV
suspendingjobs.................. 120
also see bst op
swploadindex.................... 41
225

Index

T
tasklists.......................... 53

files 53
tesh. .o 149
technical assistance................. XV
telephone numbers (Platform)....... XV
termination time for batch jobs 103
thresholds

scheduling and suspending. 64
tnploadindex 40
t ype static resource............. 27,42
U
unavail hoststatus 39
unl i censed hoststatus............ 39
USEr groupS ..o oo e e 81
users, see login sessions
USUSP batch job state........... 57,129
ut loadindex 40
X
xbsub........... ... 23
xlsbatch........................ 24
xlsnmon ... 17,30
Xterm, 142

226

	Preface
	Audience
	LSF Suite 3.2
	LSF Enterprise Edition
	LSF Standard Edition

	Related Documents
	Online Documentation

	Technical Assistance

	1. Introduction
	What is LSF?
	LSF Features

	Host Resources
	Batch Processing
	Interactive Processing
	Clusters
	Fault Tolerance
	Structure of LSF Base
	Load Information Manager
	Remote Execution Server
	LSF API
	LSF Utility Programs
	LSF Batch
	LSF JobScheduler
	LSF MultiCluster
	LSF Analyzer
	Command Interpreter
	LSF Make
	Load Sharing Tools
	Parallel Tools
	GUI Tools

	Applications

	Structure of LSF Batch
	NQS Interoperation

	2. Getting Started
	Getting Cluster Information
	Displaying the Cluster and Master Names
	Displaying Available Resources

	Getting Host Information
	Displaying Static Host Information
	Displaying Load Information

	Running Jobs
	Running Jobs on Remote Hosts
	Load Sharing Commands With lstcsh
	Parallel Processing With LSF Make
	Listing Hosts
	Submitting a Job
	Selecting a Job Queue
	Tracking Batch Jobs
	xbsub and xlsbatch GUI Applications

	3. Cluster Information
	Finding the Master
	Listing Resources
	Listing Hosts
	Displaying the Load
	Graphical Load Display

	4. Resources
	Introduction to Resources
	Classification by Availability
	Classification by the Way Values Change
	Classification by Types of Values
	Classification by Definition
	Classification by Location
	Load Indices
	Static Resources
	Shared Resources
	Viewing Shared Resources

	Boolean Resources

	Listing Resources
	Resource Requirement Strings
	Selection String
	Order String
	Resource Usage String
	LSF Batch Jobs
	LSF Base Jobs

	Job Spanning String
	Specifying Shared Resources

	Configuring Resource Requirements
	Remote Task List File
	Managing Your Task List

	Using Resource Requirements

	5. Using LSF Batch
	Batch Jobs
	Fairshare Scheduling Policy
	Host Partition Fairshare Scheduling
	Queue-Level Fairshare Scheduling
	Hierarchical Fairshare

	Other Scheduling Policies
	Preemptive Scheduling
	Exclusive Scheduling
	Processor Reservation
	Backfill Scheduling

	Scheduling Parameters
	Load Thresholds
	Scheduling Conditions

	Time Windows for Queues and Hosts
	Run Windows
	Dispatch Windows

	Batch Queues
	Finding Out What Queues Are Available
	Detailed Queue Information

	Automatic Queue Selection
	Specifying Default Queues
	Queue Selection Mechanism

	Choosing a Queue
	Batch Users
	Batch Hosts
	User and Host Groups
	Viewing Hierarchical Share Information
	Queue-Level Job Starters
	Configuration Parameters
	User Controlled Account Mapping

	6. Submitting Batch Jobs
	Input and Output
	Resource Requirements
	Resource Reservation
	Host Selection
	Host Preference
	Resource Limits
	Pre-Execution Commands
	Job Dependencies
	Job Dependency Examples

	Remote File Access
	Start and Termination Time
	Parallel Jobs
	Minimum and Maximum Number of Processors
	Specifying Locality

	Job Arrays
	Creating a Job Array
	Syntax
	Examples of indexList specifications

	LSB_JOBINDEX Environment Variable
	Array Job Dependencies
	Handling Input/Output/Error Files for Job Arrays

	Specifying a Share Account
	Re-initializing Job Environment on the Execution H...
	Other bsub Options
	Job Scripts
	Examples
	Embedded Submission Options

	Running a Job Under a Particular Shell
	Submitting Jobs Using the Job Submission GUI

	7. Tracking Batch Jobs
	Displaying Job Status
	Finding Pending or Suspension Reasons
	Monitoring Resource Consumption of Jobs
	Displaying Job History
	Viewing Chronological History

	Checking Partial Job Output
	Tracking Job Arrays

	Displaying Queue and Host Status
	Job Controls
	Killing Jobs
	Suspending and Resuming Jobs
	Controlling Job Arrays
	Sending an Arbitrary Signal to a Job

	Moving Jobs Within and Between Queues
	Job Modification
	Submitted Job Modification
	Dispatched Job Modification
	Job Array Modification
	Syntax
	Examples

	Job Tracking and Manipulation Using the GUI

	8. Running Interactive Jobs
	Shared Files and User IDs
	Running Remote Jobs with lsrun
	Running Parallel Jobs with lsgrun
	Load Sharing Interactive Sessions
	Load Sharing Login
	Load Sharing X Sessions

	Command-Level Job Starters
	Interactive Batch Job Support
	Shell Mode for Remote Execution

	9. Using lstcsh
	Starting lstcsh
	Using lstcsh as Your Login Shell
	Automatic Remote Execution
	Host Redirection
	Job Control
	Built-in Commands
	The lsmode Command
	The connect Command

	Modes of Operation
	Differences from Other Shells
	Writing Shell Scripts in lstcsh
	Limitations

	10. Using LSF Make
	Parallel Execution
	Invoking LSF Make
	Specifying the Number of Processors

	File Server Load
	Tuning Your Makefile
	Building in Subdirectories
	Running lsmake as a Batch Job
	Differences from Other Versions of make

	11. Checkpointing and Migration
	Approaches to Checkpointing
	Kernel-level Checkpointing
	User-level Checkpointing
	Application-level Checkpointing
	Checkpoint Directory
	Uniform Checkpointing Interface
	The echkpnt Command
	The erestart Command

	Submitting Checkpointable Jobs
	Checkpointing a Job
	Restarting a Checkpointed Job
	Job Migration
	Queues and Hosts for Automatic Job Migration

	Automatically Rerunning and Restarting Jobs
	Submitting a Job for Automatic Migration

	Building Checkpointable Jobs
	The Checkpoint Library
	The Checkpoint Startup Routine
	Linking
	Limitations

	12. Customizing Batch Jobs for LSF
	Environment Variables
	Parallel Jobs
	Getting the Host List
	Starting Parallel Tasks With lstools
	Using LSF Make to Run Parallel Batch Jobs
	Submitting PVM Jobs to LSF Batch
	Submitting MPI Jobs to LSF Batch
	Submitting POE Jobs to LSF Batch
	Using a Job Starter for Parallel Jobs

	13. Using LSF MultiCluster
	What is LSF MultiCluster?
	Getting Remote Cluster Information
	Running Batch Jobs across Clusters
	Running Interactive Jobs on Remote Clusters
	User-Level Account Mapping Between Clusters

	14. Interoperation with NQS
	Choosing an LSF Batch Queue
	Submitting a Job from LSF to NQS
	Controlling Jobs Running on NQS
	Forwarding of Output Files

	A. Customizing xlsbatch Menu Items
	B. Frame Arrays
	Overview
	Distribution
	Frame Array Concepts
	Submitting Frame Arrays
	Syntax
	Examples

	Tracking Frame Arrays
	Examples

	Controlling Frame Arrays
	Syntax
	Examples

	C. Using LSF with Alias Renderer
	Overview
	Distribution
	Installing the queue-level job starter
	Submitting Checkpointed Frame Arrays
	Example

	Tracking Checkpointed Frame Arrays
	Example

	D. Using LSF with FLUENT
	Overview
	Distribution
	Configuring the Checkpointing Executable Files
	Submitting the FLUENT Job
	Checkpointing the FLUENT job
	Restarting the FLUENT job

	Index

